Similar subtrajectory search is a finer-grained operator that can better capture the similarities between one query trajectory and a portion of a data trajectory than the traditional similar trajectory search, which requires the two checked trajectories are similar to each other in whole. Many real applications (e.g., trajectory clustering and trajectory join) utilize similar subtrajectory search as a basic operator. It is considered that the time complexity is O(mn^2) for exact algorithms to solve the similar subtrajectory search problem under most trajectory distance functions in the existing studies, where m is the length of the query trajectory and n is the length of the data trajectory. In this paper, to the best of our knowledge, we are the first to propose an exact algorithm to solve the similar subtrajectory search problem in O(mn) time for most of widely used trajectory distance functions (e.g., WED, DTW, ERP, EDR and Frechet distance). Through extensive experiments on three real datasets, we demonstrate the efficiency and effectiveness of our proposed algorithms.
End-to-end learning has become a popular method for joint transmitter and receiver optimization in optical communication systems. Such approach may require a differentiable channel model, thus hindering the optimization of links based on directly modulated lasers (DMLs). This is due to the DML behavior in the large-signal regime, for which no analytical solution is available. In this paper, this problem is addressed by developing and comparing differentiable machine learning-based surrogate models. The models are quantitatively assessed in terms of root mean square error and training/testing time. Once the models are trained, the surrogates are then tested in a numerical equalization setup, resembling a practical end-to-end scenario. Based on the numerical investigation conducted, the convolutional attention transformer is shown to outperform the other models considered.
We show how variations of range-restriction and also the Horn property can be passed from inputs to outputs of Craig interpolation in first-order logic. The proof system is clausal tableaux, which stems from first-order ATP. Our results are induced by a restriction of the clausal tableau structure, which can be achieved in general by a proof transformation, also if the source proof is by resolution/paramodulation. Primarily addressed applications are query synthesis and reformulation with interpolation. Our methodical approach combines operations on proof structures with the immediate perspective of feasible implementation through incorporating highly optimized first-order provers.
Trajectory optimization under uncertainty underpins a wide range of applications in robotics. However, existing methods are limited in terms of reasoning about sources of epistemic and aleatoric uncertainty, space and time correlations, nonlinear dynamics, and non-convex constraints. In this work, we first introduce a continuous-time planning formulation with an average-value-at-risk constraint over the entire planning horizon. Then, we propose a sample-based approximation that unlocks an efficient and general-purpose algorithm for risk-averse trajectory optimization. We prove that the method is asymptotically optimal and derive finite-sample error bounds. Simulations demonstrate the high speed and reliability of the approach on problems with stochasticity in nonlinear dynamics, obstacle fields, interactions, and terrain parameters.
Consider the following parameterized counting variation of the classic subset sum problem, which arises notably in the context of higher homotopy groups of topological spaces: Let $\mathbf{v} \in \mathbb{Q}^d$ be a rational vector, $(T_{1}, T_{2} \ldots T_{m})$ a list of $d \times d$ rational matrices, $S \in \mathbb{Q}^{h \times d}$ a rational matrix not necessarily square and $k$ a parameter. The goal is to compute the number of ways one can choose $k$ matrices $T_{i_1}, T_{i_2}, \ldots, T_{i_k}$ from the list such that $ST_{i_k} \cdots T_{i_1}\mathbf{v} = \mathbf{0} \in \mathbb{Q}^h$. In this paper, we show that this problem is $\# W[2]$-hard for parameter $k$. %This strengthens a result of Matou\v{s}ek, who showed $\# W[1]$-hardness of that problem. As a consequence, computing the $k$-th homotopy group of a $d$-dimensional topological space for $d > 3$ is $\# W[2]$-hard for parameter $k$. We also discuss a decision version of the problem and its several modifications for which we show $W[1]/W[2]$-hardness. This is in contrast to the parameterized $k$-sum problem, which is only $W[1]$-hard (Abboud-Lewi-Williams, ESA'14). In addition, we show that the decision version of the problem without parameter is an undecidable problem, and we give a fixed-parameter tractable algorithm for matrices of bounded size over finite fields, parameterized the matrix dimensions and the order of the field.
Higher-order singular value decomposition (HOSVD) is one of the most celebrated tensor decompositions that generalizes matrix SVD to higher-order tensors. It was recently extended to the quaternion domain \cite{miao2023quat} (we refer to it as L-QHOSVD in this work). However, due to the non-commutativity of quaternion multiplications, L-QHOSVD is not consistent with matrix SVD when the order of the quaternion tensor reduces to $2$; moreover, theoretical guaranteed truncated L-QHOSVD was not investigated. To derive a more natural higher-order generalization of the quaternion matrix SVD, we first utilize the feature that left and right multiplications of quaternions are inconsistent to define left and right quaternion tensor unfoldings and left and right mode-$k$ products. Then, by using these basic tools, we propose a two-sided quaternion higher-order singular value decomposition (TS-QHOSVD). TS-QHOSVD has the following two main features: 1) it computes two factor matrices at a time from SVDs of left and right unfoldings, inheriting certain parallel properties of the original HOSVD; 2) it is consistent with matrix SVD when the order of the tensor is $2$. In addition, we study truncated TS-QHOSVD and establish its error bound measured by the tail energy; correspondingly, we also present truncated L-QHOSVD and its error bound. Deriving the error bounds is nontrivial, as the proofs are more complicated than their real counterparts, again due to the non-commutativity of quaternion multiplications. %Numerical experiments on synthetic and color video data show the efficacy of the proposed TS-QHOSVD. Finally, we illustrate the derived properties of TS-QHOSVD and its efficacy via some numerical examples.
Ordered sequences of data, specified with a join operation to combine sequences, serve as a foundation for the implementation of parallel functional algorithms. This abstract data type can be elegantly and efficiently implemented using balanced binary trees, where a join operation is provided to combine two trees and rebalance as necessary. In this work, we present a verified implementation and cost analysis of joinable red-black trees in $\textbf{calf}$, a dependent type theory for cost analysis. We implement red-black trees and auxiliary intermediate data structures in such a way that all correctness invariants are intrinsically maintained. Then, we describe and verify precise cost bounds on the operations, making use of the red-black tree invariants. Finally, we implement standard algorithms on sequences using the simple join-based signature and bound their cost in the case that red-black trees are used as the underlying implementation. All proofs are formally mechanized using the embedding of $\textbf{calf}$ in the Agda theorem prover.
Nonlinear model predictive control (NMPC) is typically restricted to short, finite horizons to limit the computational burden of online optimization. This makes a global planner necessary to avoid local minima when using NMPC for navigation in complex environments. For this reason, the performance of NMPC approaches are often limited by that of the global planner. While control policies trained with reinforcement learning (RL) can theoretically learn to avoid such local minima, they are usually unable to guarantee enforcement of general state constraints. In this paper, we augment a sampling-based stochastic NMPC (SNMPC) approach with an RL trained perception-informed value function. This allows the system to avoid observable local minima in the environment by reasoning about perception information beyond the finite planning horizon. By using Probably Approximately Correct NMPC (PAC-NMPC) as our base controller, we are also able to generate statistical guarantees of performance and safety. We demonstrate our approach in simulation and on hardware using a 1/10th scale rally car with lidar.
We introduce a general random model of a combinatorial optimization problem with geometric structure that encapsulates both linear programming and integer linear programming. Let $Q$ be a bounded set called the feasible set, $E$ be an arbitrary set called the constraint set, and $A$ be a random linear transform. We introduce and study the $\ell^q$-\textit{margin},$M_q := d_q(AQ, E)$. The margin quantifies the feasibility of finding $y \in AQ$ satisfying the constraint $y \in E$. Our contribution is to establish strong concentration of the margin for any $q \in (2,\infty]$, assuming only that $E$ has permutation symmetry. The case of $q = \infty$ is of particular interest in applications -- specifically to combinatorial ``balancing'' problems -- and is markedly out of the reach of the classical isoperimetric and concentration-of-measure tools that suffice for $q \le 2$. Generality is a key feature of this result: we assume permutation symmetry of the constraint set and nothing else. This allows us to encode many optimization problems in terms of the margin, including random versions of: the closest vector problem, integer linear feasibility, perceptron-type problems, $\ell^q$-combinatorial discrepancy for $2 \le q \le \infty$, and matrix balancing. Concentration of the margin implies a host of new sharp threshold results in these models, and also greatly simplifies and extends some key known results.
Performative prediction is a recently proposed framework where predictions guide decision-making and hence influence future data distributions. Such performative phenomena are ubiquitous in various areas, such as transportation, finance, public policy, and recommendation systems. To date, work on performative prediction has only focused on unconstrained scenarios, neglecting the fact that many real-world learning problems are subject to constraints. This paper bridges this gap by studying performative prediction under inequality constraints. Unlike most existing work that provides only performative stable points, we aim to find the optimal solutions. Anticipating performative gradients is a challenging task, due to the agnostic performative effect on data distributions. To address this issue, we first develop a robust primal-dual framework that requires only approximate gradients up to a certain accuracy, yet delivers the same order of performance as the stochastic primal-dual algorithm without performativity. Based on this framework, we then propose an adaptive primal-dual algorithm for location families. Our analysis demonstrates that the proposed adaptive primal-dual algorithm attains $\ca{O}(\sqrt{T})$ regret and constraint violations, using only $\sqrt{T} + 2T$ samples, where $T$ is the time horizon. To our best knowledge, this is the first study and analysis on the optimality of the performative prediction problem under inequality constraints. Finally, we validate the effectiveness of our algorithm and theoretical results through numerical simulations.
Privacy-preserving computational geometry is the research area on the intersection of the domains of secure multi-party computation (SMC) and computational geometry. As an important field, the privacy-preserving geometric intersection (PGI) problem is when each of the multiple parties has a private geometric graph and seeks to determine whether their graphs intersect or not without revealing their private information. In this study, through representing Alice's (Bob's) private geometric graph G_A (G_B) as the set of numbered grids S_A (S_B), an efficient privacy-preserving quantum two-party geometric intersection (PQGI) protocol is proposed. In the protocol, the oracle operation O_A (O_B) is firstly utilized to encode the private elements of S_A=(a_0, a_1, ..., a_(M-1)) (S_B=(b_0, b_1, ..., b_(N-1))) into the quantum states, and then the oracle operation O_f is applied to obtain a new quantum state which includes the XOR results between each element of S_A and S_B. Finally, the quantum counting is introduced to get the amount (t) of the states |a_i+b_j> equaling to |0>, and the intersection result can be obtained by judging t>0 or not. Compared with classical PGI protocols, our proposed protocol not only has higher security, but also holds lower communication complexity.