亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we focus on the construction methods based MWD for polar codes to improve the performance with successive cancellation list (SCL) decoding. We first propose an ordered and nested reliability sequence, namely MWD sequence, to improve the ML performance of polar codes and apply fast construction without the original channel information. In the MWD sequence, the synthetic channels are sorted by the partial MWD which is used to evaluate the influence of information bit on MWD and we prove the MWD sequence is the optimum sequence under ML decoding. Then, since the list size of SCL decoding is limited, we introduce an entropy constraint to establish a relationship between the list size and the ML performance and propose a heuristic and greedy construction method named bit grouping reorder based MWD (BGR-MWD) algorithm. In the algorithm, we divide the synthetic channels into groups by the partial MWD and greedily reorder the synthetic channels in some groups until the entropy constraint is satisfied. The simulation results show the MWD sequence is suitable for constructing polar codes with short code length. Meanwhile, the BGR-MWD algorithm has superior performance over the traditional construction methods for long code length.

相關內容

Several kernel based testing procedures are proposed to solve the problem of model selection in the presence of parameter estimation in a family of candidate models. Extending the two sample test of Gretton et al. (2006), we first provide a way of testing whether some data is drawn from a given parametric model (model specification). Second, we provide a test statistic to decide whether two parametric models are equally valid to describe some data (model comparison), in the spirit of Vuong (1989). All our tests are asymptotically standard normal under the null, even when the true underlying distribution belongs to the competing parametric families.Some simulations illustrate the performance of our tests in terms of power and level.

The paper considers the distribution of a general linear combination of central and non-central chi-square random variables by exploring the branch cut regions that appear in the standard Laplace inversion process. Due to the original interest from the directional statistics, the focus of this paper is on the density function of such distributions and not on their cumulative distribution function. In fact, our results confirm that the latter is a special case of the former. Our approach provides new insight by generating alternative characterizations of the probability density function in terms of a finite number of feasible univariate integrals. In particular, the central cases seem to allow an interesting representation in terms of the branch cuts, while general degrees of freedom and non-centrality can be easily adopted using recursive differentiation. Numerical results confirm that the proposed approach works well while more transparency and therefore easier control in the accuracy is ensured.

Regression methods assume that accurate labels are available for training. However, in certain scenarios, obtaining accurate labels may not be feasible, and relying on multiple specialists with differing opinions becomes necessary. Existing approaches addressing noisy labels often impose restrictive assumptions on the regression function. In contrast, this paper presents a novel, more flexible approach. Our method consists of two steps: estimating each labeler's expertise and combining their opinions using learned weights. We then regress the weighted average against the input features to build the prediction model. The proposed method is formally justified and empirically demonstrated to outperform existing techniques on simulated and real data. Furthermore, its flexibility enables the utilization of any machine learning technique in both steps. In summary, this method offers a simple, fast, and effective solution for training regression models with noisy labels derived from diverse expert opinions.

We establish convergence results related to the operator splitting scheme on the Cauchy problem for the nonlinear Schr\"odinger equation with rough initial data in $L^2$, $$ \left\{ \begin{array}{ll} i\partial_t u +\Delta u = \lambda |u|^{p} u, & (x,t) \in \mathbb{R}^d \times \mathbb{R}_+, u (x,0) =\phi (x), & x\in\mathbb{R}^d, \end{array} \right. $$ where $\lambda \in \{-1,1\}$ and $p >0$. While the Lie approximation $Z_L$ is known to converge to the solution $u$ when the initial datum $\phi$ is sufficiently smooth, the convergence result for rough initial data is open to question. In this paper, for rough initial data $\phi\in L^2 (\mathbb{R}^d)$, we prove the convergence of the Lie approximation $Z_L$ to the solution $u$ in the mass-subcritical range, $\max\left\{1,\frac{2}{d}\right\} \leq p < \frac{4}{d}$. Furthermore, our argument can be extended to the case of initial data $\phi\in H^s (\mathbb{R}^d)$ $(0<s\leq1)$, for which we obtain a convergence rate of order $\frac{s}{2-s}$ that breaks the natural order barrier $\frac{s}{2}$.

The 3rd Anti-UAV Workshop & Challenge aims to encourage research in developing novel and accurate methods for multi-scale object tracking. The Anti-UAV dataset used for the Anti-UAV Challenge has been publicly released. There are two main differences between this year's competition and the previous two. First, we have expanded the existing dataset, and for the first time, released a training set so that participants can focus on improving their models. Second, we set up two tracks for the first time, i.e., Anti-UAV Tracking and Anti-UAV Detection & Tracking. Around 76 participating teams from the globe competed in the 3rd Anti-UAV Challenge. In this paper, we provide a brief summary of the 3rd Anti-UAV Workshop & Challenge including brief introductions to the top three methods in each track. The submission leaderboard will be reopened for researchers that are interested in the Anti-UAV challenge. The benchmark dataset and other information can be found at: //anti-uav.github.io/.

We present a novel deep learning-based framework: Embedded Feature Correlation Optimization with Specific Parameter Initialization (COSPI) for 2D/3D registration which is a most challenging problem due to the difficulty such as dimensional mismatch, heavy computation load and lack of golden evaluating standard. The framework we designed includes a parameter specification module to efficiently choose initialization pose parameter and a fine-registration network to align images. The proposed framework takes extracting multi-scale features into consideration using a novel composite connection encoder with special training techniques. The method is compared with both learning-based methods and optimization-based methods to further evaluate the performance. Our experiments demonstrate that the method in this paper has improved the registration performance, and thereby outperforms the existing methods in terms of accuracy and running time. We also show the potential of the proposed method as an initial pose estimator.

Wikipedia can be edited by anyone and thus contains various quality sentences. Therefore, Wikipedia includes some poor-quality edits, which are often marked up by other editors. While editors' reviews enhance the credibility of Wikipedia, it is hard to check all edited text. Assisting in this process is very important, but a large and comprehensive dataset for studying it does not currently exist. Here, we propose WikiSQE, the first large-scale dataset for sentence quality estimation in Wikipedia. Each sentence is extracted from the entire revision history of Wikipedia, and the target quality labels were carefully investigated and selected. WikiSQE has about 3.4 M sentences with 153 quality labels. In the experiment with automatic classification using competitive machine learning models, sentences that had problems with citation, syntax/semantics, or propositions were found to be more difficult to detect. In addition, we conducted automated essay scoring experiments to evaluate the generalizability of the dataset. We show that the models trained on WikiSQE perform better than the vanilla model, indicating its potential usefulness in other domains. WikiSQE is expected to be a valuable resource for other tasks in NLP.

Knowledge distillation is the technique of compressing a larger neural network, known as the teacher, into a smaller neural network, known as the student, while still trying to maintain the performance of the larger neural network as much as possible. Existing methods of knowledge distillation are mostly applicable for classification tasks. Many of them also require access to the data used to train the teacher model. To address the problem of knowledge distillation for regression tasks under the absence of original training data, previous work has proposed a data-free knowledge distillation method where synthetic data are generated using a generator model trained adversarially against the student model. These synthetic data and their labels predicted by the teacher model are then used to train the student model. In this study, we investigate the behavior of various synthetic data generation methods and propose a new synthetic data generation strategy that directly optimizes for a large but bounded difference between the student and teacher model. Our results on benchmark and case study experiments demonstrate that the proposed strategy allows the student model to learn better and emulate the performance of the teacher model more closely.

In the field of Explainable Artificial Intelligence (XAI), counterfactual examples explain to a user the predictions of a trained decision model by indicating the modifications to be made to the instance so as to change its associated prediction. These counterfactual examples are generally defined as solutions to an optimization problem whose cost function combines several criteria that quantify desiderata for a good explanation meeting user needs. A large variety of such appropriate properties can be considered, as the user needs are generally unknown and differ from one user to another; their selection and formalization is difficult. To circumvent this issue, several approaches propose to generate, rather than a single one, a set of diverse counterfactual examples to explain a prediction. This paper proposes a review of the numerous, sometimes conflicting, definitions that have been proposed for this notion of diversity. It discusses their underlying principles as well as the hypotheses on the user needs they rely on and proposes to categorize them along several dimensions (explicit vs implicit, universe in which they are defined, level at which they apply), leading to the identification of further research challenges on this topic.

This paper aims to mitigate straggler effects in synchronous distributed learning for multi-agent reinforcement learning (MARL) problems. Stragglers arise frequently in a distributed learning system, due to the existence of various system disturbances such as slow-downs or failures of compute nodes and communication bottlenecks. To resolve this issue, we propose a coded distributed learning framework, which speeds up the training of MARL algorithms in the presence of stragglers, while maintaining the same accuracy as the centralized approach. As an illustration, a coded distributed version of the multi-agent deep deterministic policy gradient(MADDPG) algorithm is developed and evaluated. Different coding schemes, including maximum distance separable (MDS)code, random sparse code, replication-based code, and regular low density parity check (LDPC) code are also investigated. Simulations in several multi-robot problems demonstrate the promising performance of the proposed framework.

北京阿比特科技有限公司