My research objective is to explicitly bridge the gap between high computational performance and low power dissipation of robot on-board hardware by designing a bio-inspired tapered whisker neuromorphic computing (also called reservoir computing) system for offroad robot environment perception and navigation, that centres the interaction between a robot's body and its environment. Mobile robots performing tasks in unknown environments need to traverse a variety of complex terrains, and they must be able to reliably and quickly identify and characterize these terrains to avoid getting into potentially challenging or catastrophic circumstances. To solve this problem, I drew inspiration from animals like rats and seals, just relying on whiskers to perceive surroundings information and survive in dark and narrow environments. Additionally, I looked to the human cochlear which can separate different frequencies of sound. Based on these insights, my work addresses this need by exploring the physical whisker-based reservoir computing for quick and cost-efficient mobile robots environment perception and navigation step by step. This research could help us understand how the compliance of the biological counterparts helps robots to dynamically interact with the environment and provides a new solution compared with current methods for robot environment perception and navigation with limited computational resources, such as Mars.
This article addresses the obstacle avoidance problem for setpoint stabilization and path-following tasks in complex dynamic 2-D environments that go beyond conventional scenes with isolated convex obstacles. A combined motion planner and controller is proposed for setpoint stabilization that integrates the favorable convergence characteristics of closed-form motion planning techniques with the intuitive representation of system constraints through Model Predictive Control (MPC). The method is analytically proven to accomplish collision avoidance and convergence under soft conditions, and it is extended to path-following control. Various simulation scenarios using a non-holonomic unicycle robot are provided to showcase the efficacy of the control scheme and its improved convergence results compared to standard path-following MPC approaches with obstacle avoidance.
We propose DeepIPC, an end-to-end autonomous driving model that handles both perception and control tasks in driving a vehicle. The model consists of two main parts, perception and controller modules. The perception module takes an RGBD image to perform semantic segmentation and bird's eye view (BEV) semantic mapping along with providing their encoded features. Meanwhile, the controller module processes these features with the measurement of GNSS locations and angular speed to estimate waypoints that come with latent features. Then, two different agents are used to translate waypoints and latent features into a set of navigational controls to drive the vehicle. The model is evaluated by predicting driving records and performing automated driving under various conditions in real environments. The experimental results show that DeepIPC achieves the best drivability and multi-task performance even with fewer parameters compared to the other models. Codes will be published at //github.com/oskarnatan/DeepIPC.
In cooperative Multi-Agent Reinforcement Learning (MARL) agents are required to learn behaviours as a team to achieve a common goal. However, while learning a task, some agents may end up learning sub-optimal policies, not contributing to the objective of the team. Such agents are called lazy agents due to their non-cooperative behaviours that may arise from failing to understand whether they caused the rewards. As a consequence, we observe that the emergence of cooperative behaviours is not necessarily a byproduct of being able to solve a task as a team. In this paper, we investigate the applications of causality in MARL and how it can be applied in MARL to penalise these lazy agents. We observe that causality estimations can be used to improve the credit assignment to the agents and show how it can be leveraged to improve independent learning in MARL. Furthermore, we investigate how Amortized Causal Discovery can be used to automate causality detection within MARL environments. The results demonstrate that causality relations between individual observations and the team reward can be used to detect and punish lazy agents, making them develop more intelligent behaviours. This results in improvements not only in the overall performances of the team but also in their individual capabilities. In addition, results show that Amortized Causal Discovery can be used efficiently to find causal relations in MARL.
Visual navigation, a foundational aspect of Embodied AI (E-AI), has been significantly studied in the past few years. While many 3D simulators have been introduced to support visual navigation tasks, scarcely works have been directed towards combining human dynamics, creating the gap between simulation and real-world applications. Furthermore, current 3D simulators incorporating human dynamics have several limitations, particularly in terms of computational efficiency, which is a promise of E-AI simulators. To overcome these shortcomings, we introduce HabiCrowd, the first standard benchmark for crowd-aware visual navigation that integrates a crowd dynamics model with diverse human settings into photorealistic environments. Empirical evaluations demonstrate that our proposed human dynamics model achieves state-of-the-art performance in collision avoidance, while exhibiting superior computational efficiency compared to its counterparts. We leverage HabiCrowd to conduct several comprehensive studies on crowd-aware visual navigation tasks and human-robot interactions. The source code and data can be found at //habicrowd.github.io/.
Cooperative multi-agent reinforcement learning (MARL) for navigation enables agents to cooperate to achieve their navigation goals. Using emergent communication, agents learn a communication protocol to coordinate and share information that is needed to achieve their navigation tasks. In emergent communication, symbols with no pre-specified usage rules are exchanged, in which the meaning and syntax emerge through training. Learning a navigation policy along with a communication protocol in a MARL environment is highly complex due to the huge state space to be explored. To cope with this complexity, this work proposes a novel neural network architecture, for jointly learning an adaptive state space abstraction and a communication protocol among agents participating in navigation tasks. The goal is to come up with an adaptive abstractor that significantly reduces the size of the state space to be explored, without degradation in the policy performance. Simulation results show that the proposed method reaches a better policy, in terms of achievable rewards, resulting in fewer training iterations compared to the case where raw states or fixed state abstraction are used. Moreover, it is shown that a communication protocol emerges during training which enables the agents to learn better policies within fewer training iterations.
The current trend for highly dynamic and virtualized networking infrastructure made automated networking a critical requirement. Multiple solutions have been proposed to address this, including the most sought-after machine learning ML-based solutions. However, the main hurdle when developing Next Generation Network is the availability of large datasets, especially in 5G and beyond and Optical Transport Networking (OTN) traffic. This need led researchers to look for viable simulation environments to generate the necessary volume with highly configurable real-life scenarios, which can be costly in setup and require subscription-based products and even the purchase of dedicated hardware, depending on the supplier. We aim to address this issue by generating high-volume and fidelity datasets by proposing a modular solution to adapt to the user's available resources. These datasets can be used to develop better-aforementioned ML solutions resulting in higher accuracy and adaptation to real-life networking traffic.
Combining Federated Learning (FL) with a Trusted Execution Environment (TEE) is a promising approach for realizing privacy-preserving FL, which has garnered significant academic attention in recent years. Implementing the TEE on the server side enables each round of FL to proceed without exposing the client's gradient information to untrusted servers. This addresses usability gaps in existing secure aggregation schemes as well as utility gaps in differentially private FL. However, to address the issue using a TEE, the vulnerabilities of server-side TEEs need to be considered -- this has not been sufficiently investigated in the context of FL. The main technical contribution of this study is the analysis of the vulnerabilities of TEE in FL and the defense. First, we theoretically analyze the leakage of memory access patterns, revealing the risk of sparsified gradients, which are commonly used in FL to enhance communication efficiency and model accuracy. Second, we devise an inference attack to link memory access patterns to sensitive information in the training dataset. Finally, we propose an oblivious yet efficient aggregation algorithm to prevent memory access pattern leakage. Our experiments on real-world data demonstrate that the proposed method functions efficiently in practical scales.
We consider the problem of sequentially maximising an unknown function over a set of actions while ensuring that every sampled point has a function value below a given safety threshold. We model the function using kernel-based and Gaussian process methods, while differing from previous works in our assumption that the function is monotonically increasing with respect to a \emph{safety variable}. This assumption is motivated by various practical applications such as adaptive clinical trial design and robotics. Taking inspiration from the \textsc{\sffamily GP-UCB} and \textsc{\sffamily SafeOpt} algorithms, we propose an algorithm, monotone safe {\sffamily UCB} (\textsc{\sffamily M-SafeUCB}) for this task. We show that \textsc{\sffamily M-SafeUCB} enjoys theoretical guarantees in terms of safety, a suitably-defined regret notion, and approximately finding the entire safe boundary. In addition, we illustrate that the monotonicity assumption yields significant benefits in terms of the guarantees obtained, as well as algorithmic simplicity and efficiency. We support our theoretical findings by performing empirical evaluations on a variety of functions, including a simulated clinical trial experiment.
The autonomous control of flippers plays an important role in enhancing the intelligent operation of tracked robots within complex environments. While existing methods mainly rely on hand-crafted control models, in this paper, we introduce a novel approach that leverages deep reinforcement learning (DRL) techniques for autonomous flipper control in complex terrains. Specifically, we propose a new DRL network named AT-D3QN, which ensures safe and smooth flipper control for tracked robots. It comprises two modules, a feature extraction and fusion module for extracting and integrating robot and environment state features, and a deep Q-Learning control generation module for incorporating expert knowledge to obtain a smooth and efficient control strategy. To train the network, a novel reward function is proposed, considering both learning efficiency and passing smoothness. A simulation environment is constructed using the Pymunk physics engine for training. We then directly apply the trained model to a more realistic Gazebo simulation for quantitative analysis. The consistently high performance of the proposed approach validates its superiority over manual teleoperation.
Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.