亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lexicon-based constrained decoding approaches aim to control the meaning or style of the generated text through certain target concepts. Existing approaches over-focus the targets themselves, leading to a lack of high-level reasoning about how to achieve them. However, human usually tackles tasks by following certain rules that not only focuses on the targets but also on semantically relevant concepts that induce the occurrence of targets. In this work, we present DECIDER, a rule-controllable decoding strategy for constrained language generation inspired by dual-system cognitive theory. Specifically, in DECIDER, a pre-trained language model (PLM) is equiped with a logic reasoner that takes high-level rules as input. Then, the DECIDER allows rule signals to flow into the PLM at each decoding step. Extensive experimental results demonstrate that DECIDER can effectively follow given rules to guide generation direction toward the targets in a more human-like manner.

相關內容

Recent advances in large language models (LLMs) have led to significant improvements in translating natural language questions into SQL queries. While achieving high accuracy in SQL generation is crucial, little is known about the extent to which these text-to-SQL models can reliably handle diverse types of questions encountered during real-world deployment, including unanswerable ones. To explore this aspect, we introduce TrustSQL, a new benchmark designed to assess the reliability of text-to-SQL models in both single-database and cross-database settings. TrustSQL requires models to provide one of two outputs: 1) an SQL prediction or 2) abstention from making an SQL prediction, either due to potential errors in the generated SQL or when faced with unanswerable questions. For model evaluation, we explore various modeling approaches specifically designed for this task: 1) optimizing separate models for answerability detection, SQL generation, and error detection, which are then integrated into a single pipeline; and 2) developing a unified approach that uses a single model to solve this task. Experimental results using our new reliability score show that addressing this challenge involves many different areas of research and opens new avenues for model development. However, none of the methods consistently surpasses the reliability scores of a naive baseline that abstains from SQL predictions for all questions, with varying penalties.

Scene text image super-resolution (STISR) aims at simultaneously increasing the resolution and readability of low-resolution scene text images, thus boosting the performance of the downstream recognition task. Two factors in scene text images, visual structure and semantic information, affect the recognition performance significantly. To mitigate the effects from these factors, this paper proposes a Prior-Enhanced Attention Network (PEAN). Specifically, an attention-based modulation module is leveraged to understand scene text images by neatly perceiving the local and global dependence of images, despite the shape of the text. Meanwhile, a diffusion-based module is developed to enhance the text prior, hence offering better guidance for the SR network to generate SR images with higher semantic accuracy. Additionally, a multi-task learning paradigm is employed to optimize the network, enabling the model to generate legible SR images. As a result, PEAN establishes new SOTA results on the TextZoom benchmark. Experiments are also conducted to analyze the importance of the enhanced text prior as a means of improving the performance of the SR network. Code will be made available at //github.com/jdfxzzy/PEAN.

When addressing the challenge of complex multi-objective optimization problems, particularly those with non-convex and non-uniform Pareto fronts, Decomposition-based Multi-Objective Evolutionary Algorithms (MOEADs) often converge to local optima, thereby limiting solution diversity. Despite its significance, this issue has received limited theoretical exploration. Through a comprehensive geometric analysis, we identify that the traditional method of Reference Point (RP) selection fundamentally contributes to this challenge. In response, we introduce an innovative RP selection strategy, the Weight Vector-Guided and Gaussian-Hybrid method, designed to overcome the local optima issue. This approach employs a novel RP type that aligns with weight vector directions and integrates a Gaussian distribution to combine three distinct RP categories. Our research comprises two main experimental components: an ablation study involving 14 algorithms within the MOEADs framework, spanning from 2014 to 2022, to validate our theoretical framework, and a series of empirical tests to evaluate the effectiveness of our proposed method against both traditional and cutting-edge alternatives. Results demonstrate that our method achieves remarkable improvements in both population diversity and convergence.

Open large language models (LLMs) have significantly advanced the field of natural language processing, showcasing impressive performance across various tasks.Despite the significant advancements in LLMs, their effective operation still relies heavily on human input to accurately guide the dialogue flow, with agent tuning being a crucial optimization technique that involves human adjustments to the model for better response to such guidance.Addressing this dependency, our work introduces the TinyAgent model, trained on a meticulously curated high-quality dataset. We also present the Collaborative Multi-Agent Tuning (CMAT) framework, an innovative system designed to augment language agent capabilities through adaptive weight updates based on environmental feedback. This framework fosters collaborative learning and real-time adaptation among multiple intelligent agents, enhancing their context-awareness and long-term memory. In this research, we propose a new communication agent framework that integrates multi-agent systems with environmental feedback mechanisms, offering a scalable method to explore cooperative behaviors. Notably, our TinyAgent-7B model exhibits performance on par with GPT-3.5, despite having fewer parameters, signifying a substantial improvement in the efficiency and effectiveness of LLMs.

In recent years, the development of pre-trained language models (PLMs) has gained momentum, showcasing their capacity to transcend linguistic barriers and facilitate knowledge transfer across diverse languages. However, this progress has predominantly bypassed the inclusion of very-low resource languages, creating a notable void in the multilingual landscape. This paper addresses this gap by introducing four tailored PLMs specifically finetuned for Angolan languages, employing a Multilingual Adaptive Fine-tuning (MAFT) approach. In this paper, we survey the role of informed embedding initialization and synthetic data in enhancing the performance of MAFT models in downstream tasks. We improve baseline over SOTA AfroXLMR-base (developed through MAFT) and OFA (an effective embedding initialization) by 12.3 and 3.8 points respectively.

The escalating volume of data involved in Android backup packages necessitates an innovative approach to compression beyond traditional methods like GZIP, which may not fully exploit the redundancy inherent in Android backups, particularly those containing extensive XML data. This paper introduces the PatternRank algorithm, a novel compression strategy specifically designed for Android backups. PatternRank leverages pattern recognition and ranking, combined with Huffman coding, to efficiently compress data by identifying and replacing frequent, longer patterns with shorter codes. We detail two versions of the PatternRank algorithm: the original version focuses on dynamic pattern extraction and ranking, while the second version incorporates a pre-defined dictionary optimized for the common patterns found in Android backups, particularly within XML files. This tailored approach ensures that PatternRank not only outperforms traditional compression methods in terms of compression ratio and speed but also remains highly effective when dealing with the specific challenges posed by Android backup data. Our analysis includes a comparative study of compression performance across GZIP, PatternRank v1, PatternRank v2, and a combined PatternRank-Huffman method, highlighting the superior efficiency and potential of PatternRank in managing the growing data demands of Android backup packages. Through this exploration, we underscore the significance of adopting pattern-based compression algorithms in optimizing data storage and transmission in the mobile domain.

Current foundation models exhibit impressive capabilities when prompted either with text only or with both image and text inputs. But do their capabilities change depending on the input modality? In this work, we propose $\textbf{IsoBench}$, a benchmark dataset containing problems from four major areas: math, science, algorithms, and games. Each example is presented with multiple $\textbf{isomorphic representations}$ of inputs, such as visual, textual, and mathematical presentations. IsoBench provides fine-grained feedback to diagnose performance gaps caused by the form of the representation. Across various foundation models, we observe that on the same problem, models have a consistent preference towards textual representations. Most prominently, when evaluated on all IsoBench problems, Claude-3 Opus performs 28.7 points worse when provided with images instead of text; similarly, GPT-4 Turbo is 18.7 points worse and Gemini Pro is 14.9 points worse. Finally, we present two prompting techniques, $\textit{IsoCombination}$ and $\textit{IsoScratchPad}$, which improve model performance by considering combinations of, and translations between, different input representations.

Denoising diffusion probabilistic models for image inpainting aim to add the noise to the texture of image during the forward process and recover masked regions with unmasked ones of the texture via the reverse denoising process. Despite the meaningful semantics generation, the existing arts suffer from the semantic discrepancy between masked and unmasked regions, since the semantically dense unmasked texture fails to be completely degraded while the masked regions turn to the pure noise in diffusion process, leading to the large discrepancy between them. In this paper, we aim to answer how unmasked semantics guide texture denoising process;together with how to tackle the semantic discrepancy, to facilitate the consistent and meaningful semantics generation. To this end, we propose a novel structure-guided diffusion model named StrDiffusion, to reformulate the conventional texture denoising process under structure guidance to derive a simplified denoising objective for image inpainting, while revealing: 1) the semantically sparse structure is beneficial to tackle semantic discrepancy in early stage, while dense texture generates reasonable semantics in late stage; 2) the semantics from unmasked regions essentially offer the time-dependent structure guidance for the texture denoising process, benefiting from the time-dependent sparsity of the structure semantics. For the denoising process, a structure-guided neural network is trained to estimate the simplified denoising objective by exploiting the consistency of the denoised structure between masked and unmasked regions. Besides, we devise an adaptive resampling strategy as a formal criterion as whether structure is competent to guide the texture denoising process, while regulate their semantic correlations. Extensive experiments validate the merits of StrDiffusion over the state-of-the-arts. Our code is available at //github.com/htyjers/StrDiffusion.

With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.

Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.

北京阿比特科技有限公司