亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Computing properties of molecular systems rely on estimating expectations of the (unnormalized) Boltzmann distribution. Molecular dynamics (MD) is a broadly adopted technique to approximate such quantities. However, stable simulations rely on very small integration time-steps ($10^{-15}\,\mathrm{s}$), whereas convergence of some moments, e.g. binding free energy or rates, might rely on sampling processes on time-scales as long as $10^{-1}\, \mathrm{s}$, and these simulations must be repeated for every molecular system independently. Here, we present Implict Transfer Operator (ITO) Learning, a framework to learn surrogates of the simulation process with multiple time-resolutions. We implement ITO with denoising diffusion probabilistic models with a new SE(3) equivariant architecture and show the resulting models can generate self-consistent stochastic dynamics across multiple time-scales, even when the system is only partially observed. Finally, we present a coarse-grained CG-SE3-ITO model which can quantitatively model all-atom molecular dynamics using only coarse molecular representations. As such, ITO provides an important step towards multiple time- and space-resolution acceleration of MD. Code is available at \href{//github.com/olsson-group/ito}{//github.com/olsson-group/ito}.

相關內容

Stochastic programs where the uncertainty distribution must be inferred from noisy data samples are considered. The stochastic programs are approximated with distributionally-robust optimizations that minimize the worst-case expected cost over ambiguity sets, i.e., sets of distributions that are sufficiently compatible with the observed data. In this paper, the ambiguity sets capture the set of probability distributions whose convolution with the noise distribution remains within a ball centered at the empirical noisy distribution of data samples parameterized by the total variation distance. Using the prescribed ambiguity set, the solutions of the distributionally-robust optimizations converge to the solutions of the original stochastic programs when the numbers of the data samples grow to infinity. Therefore, the proposed distributionally-robust optimization problems are asymptotically consistent. This is proved under the assumption that the distribution of the noise is uniformly diagonally dominant. More importantly, the distributionally-robust optimization problems can be cast as tractable convex optimization problems and are therefore amenable to large-scale stochastic problems.

Recent temporal LiDAR-based 3D object detectors achieve promising performance based on the two-stage proposal-based approach. They generate 3D box candidates from the first-stage dense detector, followed by different temporal aggregation methods. However, these approaches require per-frame objects or whole point clouds, posing challenges related to memory bank utilization. Moreover, point clouds and trajectory features are combined solely based on concatenation, which may neglect effective interactions between them. In this paper, we propose a point-trajectory transformer with long short-term memory for efficient temporal 3D object detection. To this end, we only utilize point clouds of current-frame objects and their historical trajectories as input to minimize the memory bank storage requirement. Furthermore, we introduce modules to encode trajectory features, focusing on long short-term and future-aware perspectives, and then effectively aggregate them with point cloud features. We conduct extensive experiments on the large-scale Waymo dataset to demonstrate that our approach performs well against state-of-the-art methods. Code and models will be made publicly available at //github.com/kuanchihhuang/PTT.

Robotic perception requires the modeling of both 3D geometry and semantics. Existing methods typically focus on estimating 3D bounding boxes, neglecting finer geometric details and struggling to handle general, out-of-vocabulary objects. 3D occupancy prediction, which estimates the detailed occupancy states and semantics of a scene, is an emerging task to overcome these limitations. To support 3D occupancy prediction, we develop a label generation pipeline that produces dense, visibility-aware labels for any given scene. This pipeline comprises three stages: voxel densification, occlusion reasoning, and image-guided voxel refinement. We establish two benchmarks, derived from the Waymo Open Dataset and the nuScenes Dataset, namely Occ3D-Waymo and Occ3D-nuScenes benchmarks. Furthermore, we provide an extensive analysis of the proposed dataset with various baseline models. Lastly, we propose a new model, dubbed Coarse-to-Fine Occupancy (CTF-Occ) network, which demonstrates superior performance on the Occ3D benchmarks. The code, data, and benchmarks are released at //tsinghua-mars-lab.github.io/Occ3D/.

Subcortical segmentation remains challenging despite its important applications in quantitative structural analysis of brain MRI scans. The most accurate method, manual segmentation, is highly labor intensive, so automated tools like FreeSurfer have been adopted to handle this task. However, these traditional pipelines are slow and inefficient for processing large datasets. In this study, we propose TABSurfer, a novel 3D patch-based CNN-Transformer hybrid deep learning model designed for superior subcortical segmentation compared to existing state-of-the-art tools. To evaluate, we first demonstrate TABSurfer's consistent performance across various T1w MRI datasets with significantly shorter processing times compared to FreeSurfer. Then, we validate against manual segmentations, where TABSurfer outperforms FreeSurfer based on the manual ground truth. In each test, we also establish TABSurfer's advantage over a leading deep learning benchmark, FastSurferVINN. Together, these studies highlight TABSurfer's utility as a powerful tool for fully automated subcortical segmentation with high fidelity.

When selecting committees based on preferences of voters, a variety of different criteria can be considered. Two natural objectives are maximizing the utilitarian welfare (the sum of voters' utilities) and coverage (the number of represented voters) of the selected committee. Previous work has studied the impact on utilitarian welfare and coverage when requiring the committee to satisfy minimal requirements such as justified representation or weak proportionality. In this paper, we consider the impact of imposing much more demanding proportionality axioms. We identify a class of voting rules that achieve strong guarantees on utilitarian welfare and coverage when combined with appropriate completions. This class is defined via a weakening of priceability and contains prominent rules such as the Method of Equal Shares. We show that committees selected by these rules (i) can be completed to achieve optimal coverage and (ii) can be completed to achieve an asymptotically optimal approximation to the utilitarian welfare if they additionally satisfy EJR+. Answering an open question of Elkind et al. (2022), we use the Greedy Justified Candidate Rule to obtain the best possible utilitarian guarantee subject to proportionality. We also consider completion methods suggested in the participatory budgeting literature and other objectives besides welfare and coverage.

The minimal feature removal problem in the post-hoc explanation area aims to identify the minimal feature set (MFS). Prior studies using the greedy algorithm to calculate the minimal feature set lack the exploration of feature interactions under a monotonic assumption which cannot be satisfied in general scenarios. In order to address the above limitations, we propose a Cooperative Integrated Dynamic Refining method (CIDR) to efficiently discover minimal feature sets. Specifically, we design Cooperative Integrated Gradients (CIG) to detect interactions between features. By incorporating CIG and characteristics of the minimal feature set, we transform the minimal feature removal problem into a knapsack problem. Additionally, we devise an auxiliary Minimal Feature Refinement algorithm to determine the minimal feature set from numerous candidate sets. To the best of our knowledge, our work is the first to address the minimal feature removal problem in the field of natural language processing. Extensive experiments demonstrate that CIDR is capable of tracing representative minimal feature sets with improved interpretability across various models and datasets.

Recently, end-to-end neural diarization (EEND) is introduced and achieves promising results in speaker-overlapped scenarios. In EEND, speaker diarization is formulated as a multi-label prediction problem, where speaker activities are estimated independently and their dependency are not well considered. To overcome these disadvantages, we employ the power set encoding to reformulate speaker diarization as a single-label classification problem and propose the overlap-aware EEND (EEND-OLA) model, in which speaker overlaps and dependency can be modeled explicitly. Inspired by the success of two-stage hybrid systems, we further propose a novel Two-stage OverLap-aware Diarization framework (TOLD) by involving a speaker overlap-aware post-processing (SOAP) model to iteratively refine the diarization results of EEND-OLA. Experimental results show that, compared with the original EEND, the proposed EEND-OLA achieves a 14.39% relative improvement in terms of diarization error rates (DER), and utilizing SOAP provides another 19.33% relative improvement. As a result, our method TOLD achieves a DER of 10.14% on the CALLHOME dataset, which is a new state-of-the-art result on this benchmark to the best of our knowledge.

Diffusion models have demonstrated robust data generation capabilities in various research fields. In this paper, a Time Series Diffusion Method (TSDM) is proposed for vibration signal generation, leveraging the foundational principles of diffusion models. The TSDM uses an improved U-net architecture with attention block to effectively segment and extract features from one-dimensional time series data. It operates based on forward diffusion and reverse denoising processes for time-series generation. Experimental validation is conducted using single-frequency, multi-frequency datasets, and bearing fault datasets. The results show that TSDM can accurately generate the single-frequency and multi-frequency features in the time series and retain the basic frequency features for the diffusion generation results of the bearing fault series. Finally, TSDM is applied to the small sample fault diagnosis of three public bearing fault datasets, and the results show that the accuracy of small sample fault diagnosis of the three datasets is improved by 32.380%, 18.355% and 9.298% at most, respectively

We present DrivingGaussian, an efficient and effective framework for surrounding dynamic autonomous driving scenes. For complex scenes with moving objects, we first sequentially and progressively model the static background of the entire scene with incremental static 3D Gaussians. We then leverage a composite dynamic Gaussian graph to handle multiple moving objects, individually reconstructing each object and restoring their accurate positions and occlusion relationships within the scene. We further use a LiDAR prior for Gaussian Splatting to reconstruct scenes with greater details and maintain panoramic consistency. DrivingGaussian outperforms existing methods in driving scene reconstruction and enables photorealistic surround-view synthesis with high-fidelity and multi-camera consistency. The source code and trained models will be released.

Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.

北京阿比特科技有限公司