A series-parallel matrix is a binary matrix that can be obtained from an empty matrix by successively adjoining rows or columns that are parallel to an existing row/column or have at most one 1-entry. Equivalently, series-parallel matrices are representation matrices of graphic matroids of series-parallel graphs, which can be recognized in linear time. We propose an algorithm that, for an m-by-n matrix A with k nonzeros, determines in expected $\mathcal{O}(m + n + k)$ time whether A is series-parallel, or returns a minimal non-series-parallel submatrix of A. We complement the developed algorithm by an efficient implementation and report about computational results.
We consider Bayesian analysis on high-dimensional spheres with angular central Gaussian priors. These priors model antipodally symmetric directional data, are easily defined in Hilbert spaces and occur, for instance, in Bayesian binary classification and level set inversion. In this paper we derive efficient Markov chain Monte Carlo methods for approximate sampling of posteriors with respect to these priors. Our approaches rely on lifting the sampling problem to the ambient Hilbert space and exploit existing dimension-independent samplers in linear spaces. By a push-forward Markov kernel construction we then obtain Markov chains on the sphere, which inherit reversibility and spectral gap properties from samplers in linear spaces. Moreover, our proposed algorithms show dimension-independent efficiency in numerical experiments.
The imsets of \citet{studeny2006probabilistic} are an algebraic method for representing conditional independence models. They have many attractive properties when applied to such models, and they are particularly nice for working with directed acyclic graph (DAG) models. In particular, the `standard' imset for a DAG is in one-to-one correspondence with the independences it induces, and hence is a label for its Markov equivalence class. We first present a proposed extension to standard imsets for maximal ancestral graph (MAG) models, using the parameterizing set representation of \citet{hu2020faster}. We show that for many such graphs our proposed imset is \emph{perfectly Markovian} with respect to the graph, including \emph{simple} MAGs, as well as for a large class of purely bidirected models. Thus providing a scoring criteria by measuring the discrepancy for a list of independences that define the model; this gives an alternative to the usual BIC score that is much easier to compute. We also show that, of independence models that do represent the MAG, the one we give is the simplest possible, in a manner we make precise. Unfortunately, for some graphs the representation does not represent all the independences in the model, and in certain cases does not represent any at all. For these general MAGs, we refine the reduced ordered local Markov property \citep{richardlocalmarkov} by a novel graphical tool called \emph{power DAGs}, and this results in an imset that induces the correct model and which, under a mild condition, can be constructed in polynomial time.
Generalized linear mixed models are powerful tools for analyzing clustered data, where the unknown parameters are classically (and most commonly) estimated by the maximum likelihood and restricted maximum likelihood procedures. However, since the likelihood based procedures are known to be highly sensitive to outliers, M-estimators have become popular as a means to obtain robust estimates under possible data contamination. In this paper, we prove that, for sufficiently smooth general loss functions defining the M-estimators in generalized linear mixed models, the tail probability of the deviation between the estimated and the true regression coefficients have an exponential bound. This implies an exponential rate of consistency of these M-estimators under appropriate assumptions, generalizing the existing exponential consistency results from univariate to multivariate responses. We have illustrated this theoretical result further for the special examples of the maximum likelihood estimator and the robust minimum density power divergence estimator, a popular example of model-based M-estimators, in the settings of linear and logistic mixed models, comparing it with the empirical rate of convergence through simulation studies.
We provide a unified approach to a method of estimation of the regression parameter in balanced linear models with a structured covariance matrix that combines a high breakdown point and bounded influence with high asymptotic efficiency at models with multivariate normal errors. Of main interest are linear mixed effects models, but our approach also includes several other standard multivariate models, such as multiple regression, multivariate regression, and multivariate location and scatter. We provide sufficient conditions for the existence of the estimators and corresponding functionals, establish asymptotic properties such as consistency and asymptotic normality, and derive their robustness properties in terms of breakdown point and influence function. All the results are obtained for general identifiable covariance structures and are established under mild conditions on the distribution of the observations, which goes far beyond models with elliptically contoured densities. Some of our results are new and others are more general than existing ones in the literature. In this way this manuscript completes and improves results on high breakdown estimation with high efficiency in a wide variety of multivariate models.
Detecting hidden geometrical structures from surface measurements under electromagnetic, acoustic, or mechanical loading is the goal of noninvasive imaging techniques in medical and industrial applications. Solving the inverse problem can be challenging due to the unknown topology and geometry, the sparsity of the data, and the complexity of the physical laws. Physics-informed neural networks (PINNs) have shown promise as a simple-yet-powerful tool for problem inversion, but they have yet to be applied to general problems with a priori unknown topology. Here, we introduce a topology optimization framework based on PINNs that solves geometry detection problems without prior knowledge of the number or types of shapes. We allow for arbitrary solution topology by representing the geometry using a material density field that approaches binary values thanks to a novel eikonal regularization. We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in linear and nonlinear elastic bodies using measurements of outer surface displacement from a single mechanical loading experiment. Our methodology opens a pathway for PINNs to solve various engineering problems targeting geometry optimization.
A linear inference is a valid inequality of Boolean algebra in which each variable occurs at most once on each side. In this work we leverage recently developed graphical representations of linear formulae to build an implementation that is capable of more efficiently searching for switch-medial-independent inferences. We use it to find four `minimal' 8-variable independent inferences and also prove that no smaller ones exist; in contrast, a previous approach based directly on formulae reached computational limits already at 7 variables. Two of these new inferences derive some previously found independent linear inferences. The other two (which are dual) exhibit structure seemingly beyond the scope of previous approaches we are aware of; in particular, their existence contradicts a conjecture of Das and Strassburger. We were also able to identify 10 minimal 9-variable linear inferences independent of all the aforementioned inferences, comprising 5 dual pairs, and present applications of our implementation to recent `graph logics'.
Non-asymptotic statistical analysis is often missing for modern geometry-aware machine learning algorithms due to the possibly intricate non-linear manifold structure. This paper studies an intrinsic mean model on the manifold of restricted positive semi-definite matrices and provides a non-asymptotic statistical analysis of the Karcher mean. We also consider a general extrinsic signal-plus-noise model, under which a deterministic error bound of the Karcher mean is provided. As an application, we show that the distributed principal component analysis algorithm, LRC-dPCA, achieves the same performance as the full sample PCA algorithm. Numerical experiments lend strong support to our theories.
Transformers have achieved superior performances in many tasks in natural language processing and computer vision, which also intrigues great interests in the time series community. Among multiple advantages of transformers, the ability to capture long-range dependencies and interactions is especially attractive for time series modeling, leading to exciting progress in various time series applications. In this paper, we systematically review transformer schemes for time series modeling by highlighting their strengths as well as limitations through a new taxonomy to summarize existing time series transformers in two perspectives. From the perspective of network modifications, we summarize the adaptations of module level and architecture level of the time series transformers. From the perspective of applications, we categorize time series transformers based on common tasks including forecasting, anomaly detection, and classification. Empirically, we perform robust analysis, model size analysis, and seasonal-trend decomposition analysis to study how Transformers perform in time series. Finally, we discuss and suggest future directions to provide useful research guidance. To the best of our knowledge, this paper is the first work to comprehensively and systematically summarize the recent advances of Transformers for modeling time series data. We hope this survey will ignite further research interests in time series Transformers.
In contrast to batch learning where all training data is available at once, continual learning represents a family of methods that accumulate knowledge and learn continuously with data available in sequential order. Similar to the human learning process with the ability of learning, fusing, and accumulating new knowledge coming at different time steps, continual learning is considered to have high practical significance. Hence, continual learning has been studied in various artificial intelligence tasks. In this paper, we present a comprehensive review of the recent progress of continual learning in computer vision. In particular, the works are grouped by their representative techniques, including regularization, knowledge distillation, memory, generative replay, parameter isolation, and a combination of the above techniques. For each category of these techniques, both its characteristics and applications in computer vision are presented. At the end of this overview, several subareas, where continuous knowledge accumulation is potentially helpful while continual learning has not been well studied, are discussed.
Co-evolving time series appears in a multitude of applications such as environmental monitoring, financial analysis, and smart transportation. This paper aims to address the following challenges, including (C1) how to incorporate explicit relationship networks of the time series; (C2) how to model the implicit relationship of the temporal dynamics. We propose a novel model called Network of Tensor Time Series, which is comprised of two modules, including Tensor Graph Convolutional Network (TGCN) and Tensor Recurrent Neural Network (TRNN). TGCN tackles the first challenge by generalizing Graph Convolutional Network (GCN) for flat graphs to tensor graphs, which captures the synergy between multiple graphs associated with the tensors. TRNN leverages tensor decomposition to model the implicit relationships among co-evolving time series. The experimental results on five real-world datasets demonstrate the efficacy of the proposed method.