亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Non-asymptotic statistical analysis is often missing for modern geometry-aware machine learning algorithms due to the possibly intricate non-linear manifold structure. This paper studies an intrinsic mean model on the manifold of restricted positive semi-definite matrices and provides a non-asymptotic statistical analysis of the Karcher mean. We also consider a general extrinsic signal-plus-noise model, under which a deterministic error bound of the Karcher mean is provided. As an application, we show that the distributed principal component analysis algorithm, LRC-dPCA, achieves the same performance as the full sample PCA algorithm. Numerical experiments lend strong support to our theories.

相關內容

In causal inference, sensitivity analysis is important to assess the robustness of study conclusions to key assumptions. We perform sensitivity analysis of the assumption that missing outcomes are missing completely at random. We follow a Bayesian approach, which is nonparametric for the outcome distribution and can be combined with an informative prior on the sensitivity parameter. We give insight in the posterior and provide theoretical guarantees in the form of Bernstein-von Mises theorems for estimating the mean outcome. We study different parametrisations of the model involving Dirichlet process priors on the distribution of the outcome and on the distribution of the outcome conditional on the subject being treated. We show that these parametrisations incorporate a prior on the sensitivity parameter in different ways and discuss the relative merits. We also present a simulation study, showing the performance of the methods in finite sample scenarios.

In this paper, we propose two new algorithms for maximum-likelihood estimation (MLE) of high dimensional sparse covariance matrices. Unlike most of the state of-the-art methods, which either use regularization techniques or penalize the likelihood to impose sparsity, we solve the MLE problem based on an estimated covariance graph. More specifically, we propose a two-stage procedure: in the first stage, we determine the sparsity pattern of the target covariance matrix (in other words the marginal independence in the covariance graph under a Gaussian graphical model) using the multiple hypothesis testing method of false discovery rate (FDR), and in the second stage we use either a block coordinate descent approach to estimate the non-zero values or a proximal distance approach that penalizes the distance between the estimated covariance graph and the target covariance matrix. Doing so gives rise to two different methods, each with its own advantage: the coordinate descent approach does not require tuning of any hyper-parameters, whereas the proximal distance approach is computationally fast but requires a careful tuning of the penalty parameter. Both methods are effective even in cases where the number of observed samples is less than the dimension of the data. For performance evaluation, we test the proposed methods on both simulated and real-world data and show that they provide more accurate estimates of the sparse covariance matrix than two state-of-the-art methods.

The frequentist variability of Bayesian posterior expectations can provide meaningful measures of uncertainty even when models are misspecified. Classical methods to asymptotically approximate the frequentist covariance of Bayesian estimators such as the Laplace approximation and the nonparametric bootstrap can be practically inconvenient, since the Laplace approximation may require an intractable integral to compute the marginal log posterior, and the bootstrap requires computing the posterior for many different bootstrap datasets. We develop and explore the infinitesimal jackknife (IJ), an alternative method for computing asymptotic frequentist covariance of smooth functionals of exchangeable data, which is based on the ``influence function'' of robust statistics. We show that the influence function for posterior expectations has the form of a simple posterior covariance, and that the IJ covariance estimate is, in turn, easily computed from a single set of posterior samples. Under conditions similar to those required for a Bayesian central limit theorem to apply, we prove that the corresponding IJ covariance estimate is asymptotically equivalent to the Laplace approximation and the bootstrap. In the presence of nuisance parameters that may not obey a central limit theorem, we argue heuristically that the IJ covariance can remain a good approximation to the limiting frequentist variance. We demonstrate the accuracy and computational benefits of the IJ covariance estimates with simulated and real-world experiments.

Let $G$ be a graph on $n$ vertices of maximum degree $\Delta$. We show that, for any $\delta > 0$, the down-up walk on independent sets of size $k \leq (1-\delta)\alpha_c(\Delta)n$ mixes in time $O_{\Delta,\delta}(k\log{n})$, thereby resolving a conjecture of Davies and Perkins in an optimal form. Here, $\alpha_{c}(\Delta)n$ is the NP-hardness threshold for the problem of counting independent sets of a given size in a graph on $n$ vertices of maximum degree $\Delta$. Our mixing time has optimal dependence on $k,n$ for the entire range of $k$; previously, even polynomial mixing was not known. In fact, for $k = \Omega_{\Delta}(n)$ in this range, we establish a log-Sobolev inequality with optimal constant $\Omega_{\Delta,\delta}(1/n)$. At the heart of our proof are three new ingredients, which may be of independent interest. The first is a method for lifting $\ell_\infty$-independence from a suitable distribution on the discrete cube -- in this case, the hard-core model -- to the slice by proving stability of an Edgeworth expansion using a multivariate zero-free region for the base distribution. The second is a generalization of the Lee-Yau induction to prove log-Sobolev inequalities for distributions on the slice with considerably less symmetry than the uniform distribution. The third is a sharp decomposition-type result which provides a lossless comparison between the Dirichlet form of the original Markov chain and that of the so-called projected chain in the presence of a contractive coupling.

A non-intrusive model order reduction (MOR) method that combines features of the dynamic mode decomposition (DMD) and the radial basis function (RBF) network is proposed to predict the dynamics of parametric nonlinear systems. In many applications, we have limited access to the information of the whole system, which motivates non-intrusive model reduction. One bottleneck is capturing the dynamics of the solution without knowing the physics inside the ``black-box'' system. DMD is a powerful tool to mimic the dynamics of the system and give a reliable approximation of the solution in the time domain using only the dominant DMD modes. However, DMD cannot reproduce the parametric behavior of the dynamics. Our contribution focuses on extending DMD to parametric DMD by RBF interpolation. Specifically, an RBF network is first trained using snapshot matrices at limited parameter samples. The snapshot matrix at any new parameter sample can be quickly learned from the RBF network. DMD will use the newly generated snapshot matrix at the online stage to predict the time patterns of the dynamics corresponding to the new parameter sample. The proposed framework and algorithm are tested and validated by numerical examples including models with parametrized and time-varying inputs.

When an exposure of interest is confounded by unmeasured factors, an instrumental variable (IV) can be used to identify and estimate certain causal contrasts. Identification of the marginal average treatment effect (ATE) from IVs relies on strong untestable structural assumptions. When one is unwilling to assert such structure, IVs can nonetheless be used to construct bounds on the ATE. Famously, Balke and Pearl (1997) proved tight bounds on the ATE for a binary outcome, in a randomized trial with noncompliance and no covariate information. We demonstrate how these bounds remain useful in observational settings with baseline confounders of the IV, as well as randomized trials with measured baseline covariates. The resulting bounds on the ATE are non-smooth functionals, and thus standard nonparametric efficiency theory is not immediately applicable. To remedy this, we propose (1) under a novel margin condition, influence function-based estimators of the bounds that can attain parametric convergence rates when the nuisance functions are modeled flexibly, and (2) estimators of smooth approximations of these bounds. We propose extensions to continuous outcomes, explore finite sample properties in simulations, and illustrate the proposed estimators in a randomized field experiment studying the effects of canvassing on resulting voter turnout.

One of the possible representations of three-valued instantaneous noise-based logic is proposed. The third value is an uncertain bit value, which can be useful in artificial intelligence applications. There is a forth value, too, that can represent a non-existing bit (vacuum-state) that is the same (1 numeric value) for all bits, however that is a squeezed state common for all bits. Some logic gates are explored. A ternary Universe has a significant advantage compared to the standard binary one: its amplitude is never zero during any clock period. All the known binary logic gates work for the binary bit values in the same way as earlier therefore the former binary algorithms can be run in the ternary system with no change and without the problems posed by zero values of the Universe.

We introduce a priori Sobolev-space error estimates for the solution of nonlinear, and possibly parametric, PDEs using Gaussian process and kernel based methods. The primary assumptions are: (1) a continuous embedding of the reproducing kernel Hilbert space of the kernel into a Sobolev space of sufficient regularity; and (2) the stability of the differential operator and the solution map of the PDE between corresponding Sobolev spaces. The proof is articulated around Sobolev norm error estimates for kernel interpolants and relies on the minimizing norm property of the solution. The error estimates demonstrate dimension-benign convergence rates if the solution space of the PDE is smooth enough. We illustrate these points with applications to high-dimensional nonlinear elliptic PDEs and parametric PDEs. Although some recent machine learning methods have been presented as breaking the curse of dimensionality in solving high-dimensional PDEs, our analysis suggests a more nuanced picture: there is a trade-off between the regularity of the solution and the presence of the curse of dimensionality. Therefore, our results are in line with the understanding that the curse is absent when the solution is regular enough.

The trade algorithm, which includes the curveball and fastball implementations, is the state-of-the-art for uniformly sampling r x c binary matrices with fixed row and column sums. The mixing time of the trade algorithm is currently unknown, although 5r is currently used as a heuristic. We propose a distribution-based approach to estimating the mixing time, but which also can return a sample of matrices that are nearly guaranteed to be uniformly randomly sampled. In numerical experiments on matrices that vary by size, fill, and row and column sum distributions, we find that the upper bound on mixing time is at least 10r, and that it increases as a function of both c and the fraction of cells containing a 1.

Motivated by the mathematical modeling of tumor invasion in healthy tissues, we propose a generalized compressible diphasic Navier-Stokes Cahn-Hilliard model that we name G-NSCH. We assume that the two phases of the fluid represent two different populations of cells: cancer cells and healthy tissue. We include in our model possible friction and proliferation effects. The model aims to be as general as possible to study the possible mechanical effects playing a role in the invasive growth of a tumor. In the present work, we focus on the analysis and numerical simulation of the G-NSCH model. Our G-NSCH system is derived rigorously and satisfies the basic mechanics of fluids and the thermodynamics of particles. Under simplifying assumptions, we prove the existence of global weak solutions. We also propose a structure-preserving numerical scheme based on the scalar auxiliary variable method to simulate our system and present some numerical simulations validating the properties of the numerical scheme and illustrating the solutions of the G-NSCH model.

北京阿比特科技有限公司