Motivated by the mathematical modeling of tumor invasion in healthy tissues, we propose a generalized compressible diphasic Navier-Stokes Cahn-Hilliard model that we name G-NSCH. We assume that the two phases of the fluid represent two different populations of cells: cancer cells and healthy tissue. We include in our model possible friction and proliferation effects. The model aims to be as general as possible to study the possible mechanical effects playing a role in the invasive growth of a tumor. In the present work, we focus on the analysis and numerical simulation of the G-NSCH model. Our G-NSCH system is derived rigorously and satisfies the basic mechanics of fluids and the thermodynamics of particles. Under simplifying assumptions, we prove the existence of global weak solutions. We also propose a structure-preserving numerical scheme based on the scalar auxiliary variable method to simulate our system and present some numerical simulations validating the properties of the numerical scheme and illustrating the solutions of the G-NSCH model.
An implicit variable-step BDF2 scheme is established for solving the space fractional Cahn-Hilliard equation, involving the fractional Laplacian, derived from a gradient flow in the negative order Sobolev space $H^{-\alpha}$, $\alpha\in(0,1)$. The Fourier pseudo-spectral method is applied for the spatial approximation. The proposed scheme inherits the energy dissipation law in the form of the modified discrete energy under the sufficient restriction of the time-step ratios. The convergence of the fully discrete scheme is rigorously provided utilizing the newly proved discrete embedding type convolution inequality dealing with the fractional Laplacian. Besides, the mass conservation and the unique solvability are also theoretically guaranteed. Numerical experiments are carried out to show the accuracy and the energy dissipation both for various interface widths. In particular, the multiple-time-scale evolution of the solution is captured by an adaptive time-stepping strategy in the short-to-long time simulation.
Gaussianization is a simple generative model that can be trained without backpropagation. It has shown compelling performance on low dimensional data. As the dimension increases, however, it has been observed that the convergence speed slows down. We show analytically that the number of required layers scales linearly with the dimension for Gaussian input. We argue that this is because the model is unable to capture dependencies between dimensions. Empirically, we find the same linear increase in cost for arbitrary input $p(x)$, but observe favorable scaling for some distributions. We explore potential speed-ups and formulate challenges for further research.
This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.
Intraday electricity markets play an increasingly important role in balancing the intermittent generation of renewable energy resources, which creates a need for accurate probabilistic price forecasts. However, research to date has focused on univariate approaches, while in many European intraday electricity markets all delivery periods are traded in parallel. Thus, the dependency structure between different traded products and the corresponding cross-product effects cannot be ignored. We aim to fill this gap in the literature by using copulas to model the high-dimensional intraday price return vector. We model the marginal distribution as a zero-inflated Johnson's $S_U$ distribution with location, scale and shape parameters that depend on market and fundamental data. The dependence structure is modelled using latent beta regression to account for the particular market structure of the intraday electricity market, such as overlapping but independent trading sessions for different delivery days. We allow the dependence parameter to be time-varying. We validate our approach in a simulation study for the German intraday electricity market and find that modelling the dependence structure improves the forecasting performance. Additionally, we shed light on the impact of the single intraday coupling (SIDC) on the trading activity and price distribution and interpret our results in light of the market efficiency hypothesis. The approach is directly applicable to other European electricity markets.
This paper presents a novel generic asymptotic expansion formula of expectations of multidimensional Wiener functionals through a Malliavin calculus technique. The uniform estimate of the asymptotic expansion is shown under a weaker condition on the Malliavin covariance matrix of the target Wiener functional. In particular, the method provides a tractable expansion for the expectation of an irregular functional of the solution to a multidimensional rough differential equation driven by fractional Brownian motion with Hurst index $H<1/2$, without using complicated fractional integral calculus for the singular kernel. In a numerical experiment, our expansion shows a much better approximation for a probability distribution function than its normal approximation, which demonstrates the validity of the proposed method.
The estimation of unknown parameters in simulations, also known as calibration, is crucial for practical management of epidemics and prediction of pandemic risk. A simple yet widely used approach is to estimate the parameters by minimizing the sum of the squared distances between actual observations and simulation outputs. It is shown in this paper that this method is inefficient, particularly when the epidemic models are developed based on certain simplifications of reality, also known as imperfect models which are commonly used in practice. To address this issue, a new estimator is introduced that is asymptotically consistent, has a smaller estimation variance than the least squares estimator, and achieves the semiparametric efficiency. Numerical studies are performed to examine the finite sample performance. The proposed method is applied to the analysis of the COVID-19 pandemic for 20 countries based on the SEIR (Susceptible-Exposed-Infectious-Recovered) model with both deterministic and stochastic simulations. The estimation of the parameters, including the basic reproduction number and the average incubation period, reveal the risk of disease outbreaks in each country and provide insights to the design of public health interventions.
Two new numerical schemes to approximate the Cahn-Hilliard equation with degenerate mobility (between stable values 0 and 1) are presented, by using two different non-centered approximation of the mobility. We prove that both schemes are energy stable and preserve the maximum principle approximately, i.e. the amount of the solution being outside of the interval [0,1] goes to zero in terms of a truncation parameter. Additionally, we present several numerical results in order to show the accuracy and the well behavior of the proposed schemes, comparing both schemes and the corresponding centered scheme.
We present implicit and explicit versions of a numerical algorithm for solving a Volterra integro-differential equation. These algorithms are an extension of our previous work, and cater for a kernel of general form. We use an appropriate test equation to study the stability of both algorithms,, numerically deriving stability regions. The region for the implicit method appears to be unbounded, while the explicit has a bounded region close to the origin. We perform a few calculations to demonstrate our results.
When analyzing real-world data it is common to work with event ensembles, which comprise sets of observations that collectively constrain the parameters of an underlying model of interest. Such models often have a hierarchical structure, where "local" parameters impact individual events and "global" parameters influence the entire dataset. We introduce practical approaches for optimal dataset-wide probabilistic inference in cases where the likelihood is intractable, but simulations can be realized via forward modeling. We construct neural estimators for the likelihood(-ratio) or posterior and show that explicitly accounting for the model's hierarchical structure can lead to tighter parameter constraints. We ground our discussion using case studies from the physical sciences, focusing on examples from particle physics (particle collider data) and astrophysics (strong gravitational lensing observations).
Hikers and hillwalkers typically use the gradient in the direction of travel (walking slope) as the main variable in established methods for predicting walking time (via the walking speed) along a route. Research into fell-running has suggested further variables which may improve speed algorithms in this context; the gradient of the terrain (hill slope) and the level of terrain obstruction. Recent improvements in data availability, as well as widespread use of GPS tracking now make it possible to explore these variables in a walking speed model at a sufficient scale to test statistical significance. We tested various established models used to predict walking speed against public GPS data from almost 88,000 km of UK walking / hiking tracks. Tracks were filtered to remove breaks and non-walking sections. A new generalised linear model (GLM) was then used to predict walking speeds. Key differences between the GLM and established rules were that the GLM considered the gradient of the terrain (hill slope) irrespective of walking slope, as well as the terrain type and level of terrain obstruction in off-road travel. All of these factors were shown to be highly significant, and this is supported by a lower root-mean-square-error compared to existing functions. We also observed an increase in RMSE between the GLM and established methods as hill slope increases, further supporting the importance of this variable.