亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

A data-driven framework is presented, that enables the prediction of quantities, either observations or parameters, given sufficient partial data. The framework is illustrated via a computational model of the deposition of Cu in a Chemical Vapor Deposition (CVD) reactor, where the reactor pressure, the deposition temperature and feed mass flow rate are important process parameters that determine the outcome of the process. The sampled observations are high-dimensional vectors containing the outputs of a detailed CFD steady-state model of the process, i.e. the values of velocity, pressure, temperature, and species mass fractions at each point in the discretization. A machine learning workflow is presented, able to predict out-of-sample (a) observations (e.g. mass fraction in the reactor) given process parameters (e.g. inlet temperature); (b) process parameters given observation data; and (c) partial observations (e.g. temperature in the reactor) given other partial observations (e.g. mass fraction in the reactor). The proposed workflow relies on the manifold learning schemes Diffusion Maps and the associated Geometric Harmonics. Diffusion Maps is used for discovering a reduced representation of the available data, and Geometric Harmonics for extending functions defined on the manifold. In our work a special use case of Geometric Harmonics is formulated and implemented, which we call Double Diffusion Maps, to map from the reduced representation back to (partial) observations and process parameters. A comparison of our manifold learning scheme to the traditional Gappy-POD approach is provided: ours can be thought of as a "Gappy DMAP" approach. The presented methodology is easily transferable to application domains beyond reactor engineering.

相關內容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移動Ad hoc和傳感器系統IEEE國際會議。 Publisher:IEEE。 SIT:

The multi-armed bandit(MAB) problem is a simple yet powerful framework that has been extensively studied in the context of decision-making under uncertainty. In many real-world applications, such as robotic applications, selecting an arm corresponds to a physical action that constrains the choices of the next available arms (actions). Motivated by this, we study an extension of MAB called the graph bandit, where an agent travels over a graph to maximize the reward collected from different nodes. The graph defines the agent's freedom in selecting the next available nodes at each step. We assume the graph structure is fully available, but the reward distributions are unknown. Built upon an offline graph-based planning algorithm and the principle of optimism, we design a learning algorithm, G-UCB, that balances long-term exploration-exploitation using the principle of optimism. We show that our proposed algorithm achieves $O(\sqrt{|S|T\log(T)}+D|S|\log T)$ learning regret, where $|S|$ is the number of nodes and $D$ is the diameter of the graph, which matches the theoretical lower bound $\Omega(\sqrt{|S|T})$ up to logarithmic factors. To our knowledge, this result is among the first tight regret bounds in non-episodic, un-discounted learning problems with known deterministic transitions. Numerical experiments confirm that our algorithm outperforms several benchmarks.

We revisit the Bayesian Context Trees (BCT) modelling framework for discrete time series, which was recently found to be very effective in numerous tasks including model selection, estimation and prediction. A novel representation of the induced posterior distribution on model space is derived in terms of a simple branching process, and several consequences of this are explored in theory and in practice. First, it is shown that the branching process representation leads to a simple variable-dimensional Monte Carlo sampler for the joint posterior distribution on models and parameters, which can efficiently produce independent samples. This sampler is found to be more efficient than earlier MCMC samplers for the same tasks. Then, the branching process representation is used to establish the asymptotic consistency of the BCT posterior, including the derivation of an almost-sure convergence rate. Finally, an extensive study is carried out on the performance of the induced Bayesian entropy estimator. Its utility is illustrated through both simulation experiments and real-world applications, where it is found to outperform several state-of-the-art methods.

Autoencoders have demonstrated remarkable success in learning low-dimensional latent features of high-dimensional data across various applications. Assuming that data are sampled near a low-dimensional manifold, we employ chart autoencoders, which encode data into low-dimensional latent features on a collection of charts, preserving the topology and geometry of the data manifold. Our paper establishes statistical guarantees on the generalization error of chart autoencoders, and we demonstrate their denoising capabilities by considering $n$ noisy training samples, along with their noise-free counterparts, on a $d$-dimensional manifold. By training autoencoders, we show that chart autoencoders can effectively denoise the input data with normal noise. We prove that, under proper network architectures, chart autoencoders achieve a squared generalization error in the order of $\displaystyle n^{-\frac{2}{d+2}}\log^4 n$, which depends on the intrinsic dimension of the manifold and only weakly depends on the ambient dimension and noise level. We further extend our theory on data with noise containing both normal and tangential components, where chart autoencoders still exhibit a denoising effect for the normal component. As a special case, our theory also applies to classical autoencoders, as long as the data manifold has a global parametrization. Our results provide a solid theoretical foundation for the effectiveness of autoencoders, which is further validated through several numerical experiments.

The Variational Monte Carlo (VMC) is a promising approach for computing the ground state energy of many-body quantum problems and attracts more and more interests due to the development of machine learning. The recent paradigms in VMC construct neural networks as trial wave functions, sample quantum configurations using Markov chain Monte Carlo (MCMC) and train neural networks with stochastic gradient descent (SGD) method. However, the theoretical convergence of VMC is still unknown when SGD interacts with MCMC sampling given a well-designed trial wave function. Since MCMC reduces the difficulty of estimating gradients, it has inevitable bias in practice. Moreover, the local energy may be unbounded, which makes it harder to analyze the error of MCMC sampling. Therefore, we assume that the local energy is sub-exponential and use the Bernstein inequality for non-stationary Markov chains to derive error bounds of the MCMC estimator. Consequently, VMC is proven to have a first order convergence rate $O(\log K/\sqrt{n K})$ with $K$ iterations and a sample size $n$. It partially explains how MCMC influences the behavior of SGD. Furthermore, we verify the so-called correlated negative curvature condition and relate it to the zero-variance phenomena in solving eigenvalue functions. It is shown that VMC escapes from saddle points and reaches $(\epsilon,\epsilon^{1/4})$ -approximate second order stationary points or $\epsilon^{1/2}$-variance points in at least $O(\epsilon^{-11/2}\log^{2}(1/\epsilon) )$ steps with high probability. Our analysis enriches the understanding of how VMC converges efficiently and can be applied to general variational methods in physics and statistics.

We investigate the parameterized complexity of several problems formalizing cluster identification in graphs. In other words we ask whether a graph contains a large enough and sufficiently connected subgraph. We study here three relaxations of CLIQUE: $s$-CLUB and $s$-CLIQUE, in which the relaxation is focused on the distances in respectively the cluster and the original graph, and $\gamma$-COMPLETE SUBGRAPH in which the relaxation is made on the minimal degree in the cluster. As these three problems are known to be NP-hard, we study here their parameterized complexities. We prove that $s$-CLUB and $s$-CLIQUE are NP-hard even restricted to graphs of degeneracy $\le 3$ whenever $s \ge 3$, and to graphs of degeneracy $\le 2$ whenever $s \ge 5$, which is a strictly stronger result than its W[1]-hardness parameterized by the degeneracy. We also obtain that these problems are solvable in polynomial time on graphs of degeneracy $1$. Concerning $\gamma$-COMPLETE SUBGRAPH, we prove that it is W[1]-hard parameterized by both the degeneracy, which implies the W[1]-hardness parameterized by the number of vertices in the $\gamma$-complete-subgraph, and the number of elements outside the $\gamma$-complete subgraph.

We examine the problem of regret minimization when the learner is involved in a continuous game with other optimizing agents: in this case, if all players follow a no-regret algorithm, it is possible to achieve significantly lower regret relative to fully adversarial environments. We study this problem in the context of variationally stable games (a class of continuous games which includes all convex-concave and monotone games), and when the players only have access to noisy estimates of their individual payoff gradients. If the noise is additive, the game-theoretic and purely adversarial settings enjoy similar regret guarantees; however, if the noise is multiplicative, we show that the learners can, in fact, achieve constant regret. We achieve this faster rate via an optimistic gradient scheme with learning rate separation -- that is, the method's extrapolation and update steps are tuned to different schedules, depending on the noise profile. Subsequently, to eliminate the need for delicate hyperparameter tuning, we propose a fully adaptive method that attains nearly the same guarantees as its non-adapted counterpart, while operating without knowledge of either the game or of the noise profile.

In practical engineering experiments, the data obtained through detectors are inevitably noisy. For the already proposed data-enabled physics-informed neural network (DEPINN) \citep{DEPINN}, we investigate the performance of DEPINN in calculating the neutron diffusion eigenvalue problem from several perspectives when the prior data contain different scales of noise. Further, in order to reduce the effect of noise and improve the utilization of the noisy prior data, we propose innovative interval loss functions and give some rigorous mathematical proofs. The robustness of DEPINN is examined on two typical benchmark problems through a large number of numerical results, and the effectiveness of the proposed interval loss function is demonstrated by comparison. This paper confirms the feasibility of the improved DEPINN for practical engineering applications in nuclear reactor physics.

In this letter, we propose a model parameter identification method via a hyperparameter optimization scheme (MIHO). Our method adopts an efficient explore-exploit strategy to identify the parameters of dynamic models in a data-driven optimization manner. We utilize MIHO for model parameter identification of the AV-21, a full-scaled autonomous race vehicle. We then incorporate the optimized parameters for the design of model-based planning and control systems of our platform. In experiments, MIHO exhibits more than 13 times faster convergence than traditional parameter identification methods. Furthermore, the parametric models learned via MIHO demonstrate good fitness to the given datasets and show generalization ability in unseen dynamic scenarios. We further conduct extensive field tests to validate our model-based system, demonstrating stable obstacle avoidance and high-speed driving up to 217 km/h at the Indianapolis Motor Speedway and Las Vegas Motor Speedway. The source code for MIHO and videos of the tests are available at //github.com/hynkis/MIHO.

Synthetic Aperture Radar is known to be able to provide high-resolution estimates of surface wind speed. These estimates usually rely on a Geophysical Model Function (GMF) that has difficulties accounting for non-wind processes such as rain events. Convolutional neural network, on the other hand, have the capacity to use contextual information and have demonstrated their ability to delimit rainfall areas. By carefully building a large dataset of SAR observations from the Copernicus Sentinel-1 mission, collocated with both GMF and atmospheric model wind speeds as well as rainfall estimates, we were able to train a wind speed estimator with reduced errors under rain. Collocations with in-situ wind speed measurements from buoys show a root mean square error that is reduced by 27% (resp. 45%) under rainfall estimated at more than 1 mm/h (resp. 3 mm/h). These results demonstrate the capacity of deep learning models to correct rain-related errors in SAR products.

Detecting hidden geometrical structures from surface measurements under electromagnetic, acoustic, or mechanical loading is the goal of noninvasive imaging techniques in medical and industrial applications. Solving the inverse problem can be challenging due to the unknown topology and geometry, the sparsity of the data, and the complexity of the physical laws. Physics-informed neural networks (PINNs) have shown promise as a simple-yet-powerful tool for problem inversion, but they have yet to be applied to general problems with a priori unknown topology. Here, we introduce a topology optimization framework based on PINNs that solves geometry detection problems without prior knowledge of the number or types of shapes. We allow for arbitrary solution topology by representing the geometry using a material density field that approaches binary values thanks to a novel eikonal regularization. We validate our framework by detecting the number, locations, and shapes of hidden voids and inclusions in linear and nonlinear elastic bodies using measurements of outer surface displacement from a single mechanical loading experiment. Our methodology opens a pathway for PINNs to solve various engineering problems targeting geometry optimization.

北京阿比特科技有限公司