亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Partially Observable Markov Decision Processes (POMDPs) can model complex sequential decision-making problems under stochastic and uncertain environments. A main reason hindering their broad adoption in real-world applications is the lack of availability of a suitable POMDP model or a simulator thereof. Available solution algorithms, such as Reinforcement Learning (RL), require the knowledge of the transition dynamics and the observation generating process, which are often unknown and non-trivial to infer. In this work, we propose a combined framework for inference and robust solution of POMDPs via deep RL. First, all transition and observation model parameters are jointly inferred via Markov Chain Monte Carlo sampling of a hidden Markov model, which is conditioned on actions, in order to recover full posterior distributions from the available data. The POMDP with uncertain parameters is then solved via deep RL techniques with the parameter distributions incorporated into the solution via domain randomization, in order to develop solutions that are robust to model uncertainty. As a further contribution, we compare the use of transformers and long short-term memory networks, which constitute model-free RL solutions, with a model-based/model-free hybrid approach. We apply these methods to the real-world problem of optimal maintenance planning for railway assets.

相關內容

The inherent nature of patient data poses several challenges. Prevalent cases amass substantial longitudinal data owing to their patient volume and consistent follow-ups, however, longitudinal laboratory data are renowned for their irregularity, temporality, absenteeism, and sparsity; In contrast, recruitment for rare or specific cases is often constrained due to their limited patient size and episodic observations. This study employed self-supervised learning (SSL) to pretrain a generalized laboratory progress (GLP) model that captures the overall progression of six common laboratory markers in prevalent cardiovascular cases, with the intention of transferring this knowledge to aid in the detection of specific cardiovascular event. GLP implemented a two-stage training approach, leveraging the information embedded within interpolated data and amplify the performance of SSL. After GLP pretraining, it is transferred for TVR detection. The proposed two-stage training improved the performance of pure SSL, and the transferability of GLP exhibited distinctiveness. After GLP processing, the classification exhibited a notable enhancement, with averaged accuracy rising from 0.63 to 0.90. All evaluated metrics demonstrated substantial superiority (p < 0.01) compared to prior GLP processing. Our study effectively engages in translational engineering by transferring patient progression of cardiovascular laboratory parameters from one patient group to another, transcending the limitations of data availability. The transferability of disease progression optimized the strategies of examinations and treatments, and improves patient prognosis while using commonly available laboratory parameters. The potential for expanding this approach to encompass other diseases holds great promise.

This work presents a novel Shape Memory Alloy spring actuated continuum robotic neck that derives inspiration from pennate muscle architecture. The proposed design has 2DOF, and experimental studies reveal that the designed joint can replicate the human head's anthropomorphic range of motion. We enumerate the analytical modelling for SMA actuators and the kinematic model of the proposed design configuration. A series of experiments were conducted to assess the performance of the anthropomorphic neck by measuring the range of motion with varying input currents. Furthermore, the experiments were conducted to validate the analytical model of the SMA Multiphysics and the continuum backbone. The existing humanoid necks have been powered by conventional actuators that have relatively low energy efficiency and are prone to wear. The current research envisages application of nonconventional actuator such as SMA springs with specific geometric configuration yielding high power to weight ratio that delivers smooth motion for continuum robots as demonstrated in this present work.

In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.

Researchers are solving the challenges of spatial-temporal prediction by combining Federated Learning (FL) and graph models with respect to the constrain of privacy and security. In order to make better use of the power of graph model, some researchs also combine split learning(SL). However, there are still several issues left unattended: 1) Clients might not be able to access the server during inference phase; 2) The graph of clients designed manually in the server model may not reveal the proper relationship between clients. This paper proposes a new GNN-oriented split federated learning method, named node {\bfseries M}asking and {\bfseries M}ulti-granularity {\bfseries M}essage passing-based Federated Graph Model (M$^3$FGM) for the above issues. For the first issue, the server model of M$^3$FGM employs a MaskNode layer to simulate the case of clients being offline. We also redesign the decoder of the client model using a dual-sub-decoders structure so that each client model can use its local data to predict independently when offline. As for the second issue, a new GNN layer named Multi-Granularity Message Passing (MGMP) layer enables each client node to perceive global and local information. We conducted extensive experiments in two different scenarios on two real traffic datasets. Results show that M$^3$FGM outperforms the baselines and variant models, achieves the best results in both datasets and scenarios.

A novel and fully distributed optimization method is proposed for the distributed robust convex program (DRCP) over a time-varying unbalanced directed network without imposing any differentiability assumptions. Firstly, a tractable approximated DRCP (ADRCP) is introduced by discretizing the semi-infinite constraints into a finite number of inequality constraints and restricting the right-hand side of the constraints with a proper positive parameter, which will be iteratively solved by a random-fixed projection algorithm. Secondly, a cutting-surface consensus approach is proposed for locating an approximately optimal consensus solution of the DRCP with guaranteed feasibility. This approach is based on iteratively approximating the DRCP by successively reducing the restriction parameter of the right-hand constraints and populating the cutting-surfaces into the existing finite set of constraints. Thirdly, to ensure finite-time convergence of the distributed optimization, a distributed termination algorithm is developed based on uniformly local consensus and zeroth-order optimality under uniformly strongly connected graphs. Fourthly, it is proved that the cutting-surface consensus approach converges within a finite number of iterations. Finally, the effectiveness of the approach is illustrated through a numerical example.

Modern applications of survival analysis increasingly involve time-dependent covariates. The Python package BoXHED2.0 is a tree-boosted hazard estimator that is fully nonparametric, and is applicable to survival settings far more general than right-censoring, including recurring events and competing risks. BoXHED2.0 is also scalable to the point of being on the same order of speed as parametric boosted survival models, in part because its core is written in C++ and it also supports the use of GPUs and multicore CPUs. BoXHED2.0 is available from PyPI and also from www.github.com/BoXHED.

Causal machine learning (ML) algorithms recover graphical structures that tell us something about cause-and-effect relationships. The causal representation praovided by these algorithms enables transparency and explainability, which is necessary for decision making in critical real-world problems. Yet, causal ML has had limited impact in practice compared to associational ML. This paper investigates the challenges of causal ML with application to COVID-19 UK pandemic data. We collate data from various public sources and investigate what the various structure learning algorithms learn from these data. We explore the impact of different data formats on algorithms spanning different classes of learning, and assess the results produced by each algorithm, and groups of algorithms, in terms of graphical structure, model dimensionality, sensitivity analysis, confounding variables, predictive and interventional inference. We use these results to highlight open problems in causal structure learning and directions for future research. To facilitate future work, we make all graphs, models, data sets, and source code publicly available online.

Accurate delineation of key waveforms in an ECG is a critical initial step in extracting relevant features to support the diagnosis and treatment of heart conditions. Although deep learning based methods using a segmentation model to locate the P, QRS, and T waves have shown promising results, their ability to handle signals exhibiting arrhythmia remains unclear. This study builds on existing research by introducing a U-Net-like segmentation model for ECG delineation, with a particular focus on diverse arrhythmias. For this purpose, we curate an internal dataset containing waveform boundary annotations for various arrhythmia types to train and validate our model. Our key contributions include identifying segmentation model failures in different arrhythmia types, developing a robust model using a diverse training set, achieving comparable performance on benchmark datasets, and introducing a classification guided strategy to reduce false P wave predictions for specific arrhythmias. This study advances deep learning based ECG delineation in the context of arrhythmias and highlights its challenges.

We consider the problem of minimizing the makespan on batch processing identical machines, subject to compatibility constraints, where two jobs are compatible if they can be processed simultaneously in a same batch. These constraints are modeled by an undirected graph $G$, in which compatible jobs are represented by adjacent vertices. We show that several subproblems are polynomial. We propose some exact polynomial algorithms to solve these subproblems. To solve the general case, we propose a mixed-integer linear programming (MILP) formulation alongside with heuristic approaches. Furthermore, computational experiments are carried out to measure the performance of the proposed methods.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司