In this paper we establish limit theorems for power variations of stochastic processes controlled by fractional Brownian motions with Hurst parameter $H\leq 1/2$. We show that the power variations of such processes can be decomposed into the mix of several weighted random sums plus some remainder terms, and the convergences of power variations are dominated by different combinations of those weighted sums depending on whether $H<1/4$, $H=1/4$, or $H>1/4$. We show that when $H\geq 1/4$ the centered power variation converges stably at the rate $n^{-1/2}$, and when $H<1/4$ it converges in probability at the rate $n^{-2H}$. We determine the limit of the mixed weighted sum based on a rough path approach developed in \cite{LT20}.
Boundary value problems involving elliptic PDEs such as the Laplace and the Helmholtz equations are ubiquitous in physics and engineering. Many such problems have alternative formulations as integral equations that are mathematically more tractable than their PDE counterparts. However, the integral equation formulation poses a challenge in solving the dense linear systems that arise upon discretization. In cases where iterative methods converge rapidly, existing methods that draw on fast summation schemes such as the Fast Multipole Method are highly efficient and well established. More recently, linear complexity direct solvers that sidestep convergence issues by directly computing an invertible factorization have been developed. However, storage and compute costs are high, which limits their ability to solve large-scale problems in practice. In this work, we introduce a distributed-memory parallel algorithm based on an existing direct solver named ``strong recursive skeletonization factorization.'' The analysis of its parallel scalability applies generally to a class of existing methods that exploit the so-called strong admissibility. Specifically, we apply low-rank compression to certain off-diagonal matrix blocks in a way that minimizes data movement. Given a compression tolerance, our method constructs an approximate factorization of a discretized integral operator (dense matrix), which can be used to solve linear systems efficiently in parallel. Compared to iterative algorithms, our method is particularly suitable for problems involving ill-conditioned matrices or multiple right-hand sides. Large-scale numerical experiments are presented to demonstrate the performance of our implementation using the Julia language.
We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
We develop a provably efficient importance sampling scheme that estimates exit probabilities of solutions to small-noise stochastic reaction-diffusion equations from scaled neighborhoods of a stable equilibrium. The moderate deviation scaling allows for a local approximation of the nonlinear dynamics by their linearized version. In addition, we identify a finite-dimensional subspace where exits take place with high probability. Using stochastic control and variational methods we show that our scheme performs well both in the zero noise limit and pre-asymptotically. Simulation studies for stochastically perturbed bistable dynamics illustrate the theoretical results.
In this paper, we present a novel numerical scheme for simulating deformable and extensible capsules suspended in a Stokesian fluid. The main feature of our scheme is a partition-of-unity (POU) based representation of the surface that enables asymptotically faster computations compared to spherical-harmonics based representations. We use a boundary integral equation formulation to represent and discretize hydrodynamic interactions. The boundary integrals are weakly singular. We use the quadrature scheme based on the regularized Stokes kernels. We also use partition-of unity based finite differences that are required for the computational of interfacial forces. Given an N-point surface discretization, our numerical scheme has fourth-order accuracy and O(N) asymptotic complexity, which is an improvement over the O(N^2 log(N)) complexity of a spherical harmonics based spectral scheme that uses product-rule quadratures. We use GPU acceleration and demonstrate the ability of our code to simulate the complex shapes with high resolution. We study capsules that resist shear and tension and their dynamics in shear and Poiseuille flows. We demonstrate the convergence of the scheme and compare with the state of the art.
In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
Measurement-based quantum computation (MBQC) offers a fundamentally unique paradigm to design quantum algorithms. Indeed, due to the inherent randomness of quantum measurements, the natural operations in MBQC are not deterministic and unitary, but are rather augmented with probabilistic byproducts. Yet, the main algorithmic use of MBQC so far has been to completely counteract this probabilistic nature in order to simulate unitary computations expressed in the circuit model. In this work, we propose designing MBQC algorithms that embrace this inherent randomness and treat the random byproducts in MBQC as a resource for computation. As a natural application where randomness can be beneficial, we consider generative modeling, a task in machine learning centered around generating complex probability distributions. To address this task, we propose a variational MBQC algorithm equipped with control parameters that allow to directly adjust the degree of randomness to be admitted in the computation. Our numerical findings indicate that this additional randomness can lead to significant gains in learning performance in certain generative modeling tasks. These results highlight the potential advantages in exploiting the inherent randomness of MBQC and motivate further research into MBQC-based algorithms.
We observe a large variety of robots in terms of their bodies, sensors, and actuators. Given the commonalities in the skill sets, teaching each skill to each different robot independently is inefficient and not scalable when the large variety in the robotic landscape is considered. If we can learn the correspondences between the sensorimotor spaces of different robots, we can expect a skill that is learned in one robot can be more directly and easily transferred to the other robots. In this paper, we propose a method to learn correspondences between robots that have significant differences in their morphologies: a fixed-based manipulator robot with joint control and a differential drive mobile robot. For this, both robots are first given demonstrations that achieve the same tasks. A common latent representation is formed while learning the corresponding policies. After this initial learning stage, the observation of a new task execution by one robot becomes sufficient to generate a latent space representation pertaining to the other robot to achieve the same task. We verified our system in a set of experiments where the correspondence between two simulated robots is learned (1) when the robots need to follow the same paths to achieve the same task, (2) when the robots need to follow different trajectories to achieve the same task, and (3) when complexities of the required sensorimotor trajectories are different for the robots considered. We also provide a proof-of-the-concept realization of correspondence learning between a real manipulator robot and a simulated mobile robot.
A new mechanical model on noncircular shallow tunnelling considering initial stress field is proposed in this paper by constraining far-field ground surface to eliminate displacement singularity at infinity, and the originally unbalanced tunnel excavation problem in existing solutions is turned to an equilibrium one of mixed boundaries. By applying analytic continuation, the mixed boundaries are transformed to a homogenerous Riemann-Hilbert problem, which is subsequently solved via an efficient and accurate iterative method with boundary conditions of static equilibrium, displacement single-valuedness, and traction along tunnel periphery. The Lanczos filtering technique is used in the final stress and displacement solution to reduce the Gibbs phenomena caused by the constrained far-field ground surface for more accurte results. Several numerical cases are conducted to intensively verify the proposed solution by examining boundary conditions and comparing with existing solutions, and all the results are in good agreements. Then more numerical cases are conducted to investigate the stress and deformation distribution along ground surface and tunnel periphery, and several engineering advices are given. Further discussions on the defects of the proposed solution are also conducted for objectivity.
We study how to construct a stochastic process on a finite interval with given `roughness' and finite joint moments of marginal distributions. We first extend Ciesielski's isomorphism along a general sequence of partitions, and provide a characterization of H\"older regularity of a function in terms of its Schauder coefficients. Using this characterization we provide a better (pathwise) estimator of H\"older exponent. As an additional application, we construct fake (fractional) Brownian motions with some path properties and finite moments of marginal distributions same as (fractional) Brownian motions. These belong to non-Gaussian families of stochastic processes which are statistically difficult to distinguish from real (fractional) Brownian motions.
Differential geometric approaches are ubiquitous in several fields of mathematics, physics and engineering, and their discretizations enable the development of network-based mathematical and computational frameworks, which are essential for large-scale data science. The Forman-Ricci curvature (FRC) - a statistical measure based on Riemannian geometry and designed for networks - is known for its high capacity for extracting geometric information from complex networks. However, extracting information from dense networks is still challenging due to the combinatorial explosion of high-order network structures. Motivated by this challenge we sought a set-theoretic representation theory for high-order network cells and FRC, as well as their associated concepts and properties, which together provide an alternative and efficient formulation for computing high-order FRC in complex networks. We provide a pseudo-code, a software implementation coined FastForman, as well as a benchmark comparison with alternative implementations. Crucially, our representation theory reveals previous computational bottlenecks and also accelerates the computation of FRC. As a consequence, our findings open new research possibilities in complex systems where higher-order geometric computations are required.