In this paper we propose a variant of enriched Galerkin methods for second order elliptic equations with over-penalization of interior jump terms. The bilinear form with interior over-penalization gives a non-standard norm which is different from the discrete energy norm in the classical discontinuous Galerkin methods. Nonetheless we prove that optimal a priori error estimates with the standard discrete energy norm can be obtained by combining a priori and a posteriori error analysis techniques. We also show that the interior over-penalization is advantageous for constructing preconditioners robust to mesh refinement by analyzing spectral equivalence of bilinear forms. Numerical results are included to illustrate the convergence and preconditioning results.
We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.
In the paper, we propose a collocation method based on multivariate polynomial splines over triangulation or tetrahedralization for solving Stokes and Navier-Stokes equations. We start with a detailed explanation of the method for the Stokes equation and then extend the study to the Navier-Stokes equations. We shall show that the numerical solution can approximate the exact PDE solution very well over several domains. Then we present several numerical experimental results to demonstrate the performance of the method over the 2D and 3D settings. Also, we apply the IPBM method to our method to find the solution over several curved domains effectively. In addition, we present a comparison with the existing multivariate spline methods in \cite{AL02} and several existing methods to show that the new method produces a similar and sometimes more accurate approximation in a more efficient fashion.
We consider the coupled system of the Landau--Lifshitz--Gilbert equation and the conservation of linear momentum law to describe magnetic processes in ferromagnetic materials including magnetoelastic effects in the small-strain regime. For this nonlinear system of time-dependent partial differential equations, we present a decoupled integrator based on first-order finite elements in space and an implicit one-step method in time. We prove unconditional convergence of the sequence of discrete approximations towards a weak solution of the system as the mesh size and the time-step size go to zero. Compared to previous numerical works on this problem, for our method, we prove a discrete energy law that mimics that of the continuous problem and, passing to the limit, yields an energy inequality satisfied by weak solutions. Moreover, our method does not employ a nodal projection to impose the unit length constraint on the discrete magnetisation, so that the stability of the method does not require weakly acute meshes. Furthermore, our integrator and its analysis hold for a more general setting, including body forces and traction, as well as a more general representation of the magnetostrain. Numerical experiments underpin the theory and showcase the applicability of the scheme for the simulation of the dynamical processes involving magnetoelastic materials at submicrometer length scales.
We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_n$ which converge to $T$ in a discrete norm was shown to be sufficient to obtain regularity. Although this framework proved usefull for many applications for some instances the former assumption is too strong. Thus in the present article we report a weaker criterium for which the discrete operators $T_n$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H^1$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of divergence free elements for the Stokes equation.
Fredholm integral equations of the second kind that are defined on a finite or infinite interval arise in many applications. This paper discusses Nystr\"om methods based on Gauss quadrature rules for the solution of such integral equations. It is important to be able to estimate the error in the computed solution, because this allows the choice of an appropriate number of nodes in the Gauss quadrature rule used. This paper explores the application of averaged and weighted averaged Gauss quadrature rules for this purpose, and introduces new stability properties for them.
We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.
We introduce a family of identities that express general linear non-unitary evolution operators as a linear combination of unitary evolution operators, each solving a Hamiltonian simulation problem. This formulation can exponentially enhance the accuracy of the recently introduced linear combination of Hamiltonian simulation (LCHS) method [An, Liu, and Lin, Physical Review Letters, 2023]. For the first time, this approach enables quantum algorithms to solve linear differential equations with both optimal state preparation cost and near-optimal scaling in matrix queries on all parameters.
Exact travelling wave solutions to the two-dimensional stochastic Allen-Cahn equation with multiplicative noise are obtained through the hyperbolic tangent (tanh) method. This technique limits the solutions to travelling wave profiles by representing them with a finite tanh power series. This study focuses on how multiplicative noise affects the dynamics of these travelling waves, in particular, occurring of wave propagation failure due to high levels of noise.
This paper focuses on the randomized Milstein scheme for approximating solutions to stochastic Volterra integral equations with weakly singular kernels, where the drift coefficients are non-differentiable. An essential component of the error analysis involves the utilization of randomized quadrature rules for stochastic integrals to avoid the Taylor expansion in drift coefficient functions. Finally, we implement the simulation of multiple singular stochastic integral in the numerical experiment by applying the Riemann-Stieltjes integral.
We study the stability and sensitivity of an absorbing layer for the Boltzmann equation by examining the Bhatnagar-Gross-Krook (BGK) approximation and using the perfectly matched layer (PML) technique. To ensure stability, we discard some parameters in the model and calculate the total sensitivity indices of the remaining parameters using the ANOVA expansion of multivariate functions. We conduct extensive numerical experiments to study stability and compute the total sensitivity indices, which allow us to identify the essential parameters of the model.