We propose a method for computing the Lyapunov exponents of renewal equations (delay equations of Volterra type) and of coupled systems of renewal and delay differential equations. The method consists in the reformulation of the delay equation as an abstract differential equation, the reduction of the latter to a system of ordinary differential equations via pseudospectral collocation, and the application of the standard discrete QR method. The effectiveness of the method is shown experimentally and a MATLAB implementation is provided.
This paper introduces a time-domain combined field integral equation for electromagnetic scattering by a perfect electric conductor. The new equation is obtained by leveraging the quasi-Helmholtz projectors, which separate both the unknown and the source fields into solenoidal and irrotational components. These two components are then appropriately rescaled to cure the solution from a loss of accuracy occurring when the time step is large. Yukawa-type integral operators of a purely imaginary wave number are also used as a Calderon preconditioner to eliminate the ill-conditioning of matrix systems. The stabilized time-domain electric and magnetic field integral equations are linearly combined in a Calderon-like fashion, then temporally discretized using a proper pair of trial functions, resulting in a marching-on-in-time linear system. The novel formulation is immune to spurious resonances, dense discretization breakdown, large-time step breakdown and dc instabilities stemming from non-trivial kernels. Numerical results for both simply-connected and multiply-connected scatterers corroborate the theoretical analysis.
In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.
Consider a risk portfolio with aggregate loss random variable $S=X_1+\dots +X_n$ defined as the sum of the $n$ individual losses $X_1, \dots, X_n$. The expected allocation, $E[X_i \times 1_{\{S = k\}}]$, for $i = 1, \dots, n$ and $k \in \mathbb{N}$, is a vital quantity for risk allocation and risk-sharing. For example, one uses this value to compute peer-to-peer contributions under the conditional mean risk-sharing rule and capital allocated to a line of business under the Euler risk allocation paradigm. This paper introduces an ordinary generating function for expected allocations, a power series representation of the expected allocation of an individual risk given the total risks in the portfolio when all risks are discrete. First, we provide a simple relationship between the ordinary generating function for expected allocations and the probability generating function. Then, leveraging properties of ordinary generating functions, we reveal new theoretical results on closed-formed solutions to risk allocation problems, especially when dealing with Katz or compound Katz distributions. Then, we present an efficient algorithm to recover the expected allocations using the fast Fourier transform, providing a new practical tool to compute expected allocations quickly. The latter approach is exceptionally efficient for a portfolio of independent risks.
Finite-dimensional truncations are routinely used to approximate partial differential equations (PDEs), either to obtain numerical solutions or to derive reduced-order models. The resulting discretized equations are known to violate certain physical properties of the system. In particular, first integrals of the PDE may not remain invariant after discretization. Here, we use the method of reduced-order nonlinear solutions (RONS) to ensure that the conserved quantities of the PDE survive its finite-dimensional truncation. In particular, we develop two methods: Galerkin RONS and finite volume RONS. Galerkin RONS ensures the conservation of first integrals in Galerkin-type truncations, whether used for direct numerical simulations or reduced-order modeling. Similarly, finite volume RONS conserves any number of first integrals of the system, including its total energy, after finite volume discretization. Both methods are applicable to general time-dependent PDEs and can be easily incorporated in existing Galerkin-type or finite volume code. We demonstrate the efficacy of our methods on two examples: direct numerical simulations of the shallow water equation and a reduced-order model of the nonlinear Schrodinger equation. As a byproduct, we also generalize RONS to phenomena described by a system of PDEs.
We discuss avoidance of sure loss and coherence results for semicopulas and standardized functions, i.e., for grounded, 1-increasing functions with value $1$ at $(1,1,\ldots, 1)$. We characterize the existence of a $k$-increasing $n$-variate function $C$ fulfilling $A\leq C\leq B$ for standardized $n$-variate functions $A,B$ and discuss the method for constructing this function. Our proofs also include procedures for extending functions on some countably infinite mesh to functions on the unit box. We provide a characterization when $A$ respectively $B$ coincides with the pointwise infimum respectively supremum of the set of all $k$-increasing $n$-variate functions $C$ fulfilling $A\leq C\leq B$.
Penalizing complexity (PC) priors is a principled framework for designing priors that reduce model complexity. PC priors penalize the Kullback-Leibler Divergence (KLD) between the distributions induced by a ``simple'' model and that of a more complex model. However, in many common cases, it is impossible to construct a prior in this way because the KLD is infinite. Various approximations are used to mitigate this problem, but the resulting priors then fail to follow the designed principles. We propose a new class of priors, the Wasserstein complexity penalization (WCP) priors, by replacing KLD with the Wasserstein distance in the PC prior framework. These priors avoid the infinite model distance issues and can be derived by following the principles exactly, making them more interpretable. Furthermore, principles and recipes to construct joint WCP priors for multiple parameters analytically and numerically are proposed and we show that they can be easily obtained, either numerically or analytically, for a general class of models. The methods are illustrated through several examples for which PC priors have previously been applied.
We consider the approximation of weakly T-coercive operators. The main property to ensure the convergence thereof is the regularity of the approximation (in the vocabulary of discrete approximation schemes). In a previous work the existence of discrete operators $T_n$ which converge to $T$ in a discrete norm was shown to be sufficient to obtain regularity. Although this framework proved usefull for many applications for some instances the former assumption is too strong. Thus in the present article we report a weaker criterium for which the discrete operators $T_n$ only have to converge point-wise, but in addition a weak T-coercivity condition has to be satisfied on the discrete level. We apply the new framework to prove the convergence of certain $H^1$-conforming finite element discretizations of the damped time-harmonic Galbrun's equation, which is used to model the oscillations of stars. A main ingredient in the latter analysis is the uniformly stable invertibility of the divergence operator on certain spaces, which is related to the topic of divergence free elements for the Stokes equation.
This work puts forth low-complexity Riemannian subspace descent algorithms for the minimization of functions over the symmetric positive definite (SPD) manifold. Different from the existing Riemannian gradient descent variants, the proposed approach utilizes carefully chosen subspaces that allow the update to be written as a product of the Cholesky factor of the iterate and a sparse matrix. The resulting updates avoid the costly matrix operations like matrix exponentiation and dense matrix multiplication, which are generally required in almost all other Riemannian optimization algorithms on SPD manifold. We further identify a broad class of functions, arising in diverse applications, such as kernel matrix learning, covariance estimation of Gaussian distributions, maximum likelihood parameter estimation of elliptically contoured distributions, and parameter estimation in Gaussian mixture model problems, over which the Riemannian gradients can be calculated efficiently. The proposed uni-directional and multi-directional Riemannian subspace descent variants incur per-iteration complexities of $\O(n)$ and $\O(n^2)$ respectively, as compared to the $\O(n^3)$ or higher complexity incurred by all existing Riemannian gradient descent variants. The superior runtime and low per-iteration complexity of the proposed algorithms is also demonstrated via numerical tests on large-scale covariance estimation and matrix square root problems.
Fredholm integral equations of the second kind that are defined on a finite or infinite interval arise in many applications. This paper discusses Nystr\"om methods based on Gauss quadrature rules for the solution of such integral equations. It is important to be able to estimate the error in the computed solution, because this allows the choice of an appropriate number of nodes in the Gauss quadrature rule used. This paper explores the application of averaged and weighted averaged Gauss quadrature rules for this purpose, and introduces new stability properties for them.
We extend the use of piecewise orthogonal collocation to computing periodic solutions of renewal equations, which are particularly important in modeling population dynamics. We prove convergence through a rigorous error analysis. Finally, we show some numerical experiments confirming the theoretical results, and a couple of applications in view of bifurcation analysis.