亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning to compose visual relationships from raw images in the form of scene graphs is a highly challenging task due to contextual dependencies, but it is essential in computer vision applications that depend on scene understanding. However, no current approaches in Scene Graph Generation (SGG) aim at providing useful graphs for downstream tasks. Instead, the main focus has primarily been on the task of unbiasing the data distribution for predicting more fine-grained relations. That being said, all fine-grained relations are not equally relevant and at least a part of them are of no use for real-world applications. In this work, we introduce the task of Efficient SGG that prioritizes the generation of relevant relations, facilitating the use of Scene Graphs in downstream tasks such as Image Generation. To support further approaches, we present a new dataset, VG150-curated, based on the annotations of the popular Visual Genome dataset. We show through a set of experiments that this dataset contains more high-quality and diverse annotations than the one usually use in SGG. Finally, we show the efficiency of this dataset in the task of Image Generation from Scene Graphs.

相關內容

Recent advancements in masked image modeling (MIM) have made it a prevailing framework for self-supervised visual representation learning. The MIM pretrained models, like most deep neural network methods, remain vulnerable to adversarial attacks, limiting their practical application, and this issue has received little research attention. In this paper, we investigate how this powerful self-supervised learning paradigm can provide adversarial robustness to downstream classifiers. During the exploration, we find that noisy image modeling (NIM), a simple variant of MIM that adopts denoising as the pre-text task, reconstructs noisy images surprisingly well despite severe corruption. Motivated by this observation, we propose an adversarial defense method, referred to as De^3, by exploiting the pretrained decoder for denoising. Through De^3, NIM is able to enhance adversarial robustness beyond providing pretrained features. Furthermore, we incorporate a simple modification, sampling the noise scale hyperparameter from random distributions, and enable the defense to achieve a better and tunable trade-off between accuracy and robustness. Experimental results demonstrate that, in terms of adversarial robustness, NIM is superior to MIM thanks to its effective denoising capability. Moreover, the defense provided by NIM achieves performance on par with adversarial training while offering the extra tunability advantage. Source code and models are available at //github.com/youzunzhi/NIM-AdvDef.

We present a novel method for reconstructing 3D objects from a single RGB image. Our method leverages the latest image generation models to infer the hidden 3D structure while remaining faithful to the input image. While existing methods obtain impressive results in generating 3D models from text prompts, they do not provide an easy approach for conditioning on input RGB data. Na\"ive extensions of these methods often lead to improper alignment in appearance between the input image and the 3D reconstructions. We address these challenges by introducing Image Constrained Radiance Fields (ConRad), a novel variant of neural radiance fields. ConRad is an efficient 3D representation that explicitly captures the appearance of an input image in one viewpoint. We propose a training algorithm that leverages the single RGB image in conjunction with pretrained Diffusion Models to optimize the parameters of a ConRad representation. Extensive experiments show that ConRad representations can simplify preservation of image details while producing a realistic 3D reconstruction. Compared to existing state-of-the-art baselines, we show that our 3D reconstructions remain more faithful to the input and produce more consistent 3D models while demonstrating significantly improved quantitative performance on a ShapeNet object benchmark.

We introduce an improved solution to the neural image-based rendering problem in computer vision. Given a set of images taken from a freely moving camera at train time, the proposed approach could synthesize a realistic image of the scene from a novel viewpoint at test time. The key ideas presented in this paper are (i) Recovering accurate camera parameters via a robust pipeline from unposed day-to-day images is equally crucial in neural novel view synthesis problem; (ii) It is rather more practical to model object's content at different resolutions since dramatic camera motion is highly likely in day-to-day unposed images. To incorporate the key ideas, we leverage the fundamentals of scene rigidity, multi-scale neural scene representation, and single-image depth prediction. Concretely, the proposed approach makes the camera parameters as learnable in a neural fields-based modeling framework. By assuming per view depth prediction is given up to scale, we constrain the relative pose between successive frames. From the relative poses, absolute camera pose estimation is modeled via a graph-neural network-based multiple motion averaging within the multi-scale neural-fields network, leading to a single loss function. Optimizing the introduced loss function provides camera intrinsic, extrinsic, and image rendering from unposed images. We demonstrate, with examples, that for a unified framework to accurately model multiscale neural scene representation from day-to-day acquired unposed multi-view images, it is equally essential to have precise camera-pose estimates within the scene representation framework. Without considering robustness measures in the camera pose estimation pipeline, modeling for multi-scale aliasing artifacts can be counterproductive. We present extensive experiments on several benchmark datasets to demonstrate the suitability of our approach.

Existing video compression (VC) methods primarily aim to reduce the spatial and temporal redundancies between consecutive frames in a video while preserving its quality. In this regard, previous works have achieved remarkable results on videos acquired under specific settings such as instant (known) exposure time and shutter speed which often result in sharp videos. However, when these methods are evaluated on videos captured under different temporal priors, which lead to degradations like motion blur and low frame rate, they fail to maintain the quality of the contents. In this work, we tackle the VC problem in a general scenario where a given video can be blurry due to predefined camera settings or dynamics in the scene. By exploiting the natural trade-off between visual enhancement and data compression, we formulate VC as a min-max optimization problem and propose an effective framework and training strategy to tackle the problem. Extensive experimental results on several benchmark datasets confirm the effectiveness of our method compared to several state-of-the-art VC approaches.

For autonomous vehicles (AVs), visual perception techniques based on sensors like cameras play crucial roles in information acquisition and processing. In various computer perception tasks for AVs, it may be helpful to match landmark patches taken by an onboard camera with other landmark patches captured at a different time or saved in a street scene image database. To perform matching under challenging driving environments caused by changing seasons, weather, and illumination, we utilize the spatial neighborhood information of each patch. We propose an approach, named RobustMat, which derives its robustness to perturbations from neural differential equations. A convolutional neural ODE diffusion module is used to learn the feature representation for the landmark patches. A graph neural PDE diffusion module then aggregates information from neighboring landmark patches in the street scene. Finally, feature similarity learning outputs the final matching score. Our approach is evaluated on several street scene datasets and demonstrated to achieve state-of-the-art matching results under environmental perturbations.

Denoising Diffusion models have exhibited remarkable capabilities in image generation. However, generating high-quality samples requires a large number of iterations. Knowledge distillation for diffusion models is an effective method to address this limitation with a shortened sampling process but causes degraded generative quality. Based on our analysis with bias-variance decomposition and experimental observations, we attribute the degradation to the spatial fitting error occurring in the training of both the teacher and student model. Accordingly, we propose $\textbf{S}$patial $\textbf{F}$itting-$\textbf{E}$rror $\textbf{R}$eduction $\textbf{D}$istillation model ($\textbf{SFERD}$). SFERD utilizes attention guidance from the teacher model and a designed semantic gradient predictor to reduce the student's fitting error. Empirically, our proposed model facilitates high-quality sample generation in a few function evaluations. We achieve an FID of 5.31 on CIFAR-10 and 9.39 on ImageNet 64$\times$64 with only one step, outperforming existing diffusion methods. Our study provides a new perspective on diffusion distillation by highlighting the intrinsic denoising ability of models.

In the contemporary digital age, the proliferation of deepfakes presents a formidable challenge to the sanctity of information dissemination. Audio deepfakes, in particular, can be deceptively realistic, posing significant risks in misinformation campaigns. To address this threat, we introduce the Multi-Feature Audio Authenticity Network (MFAAN), an advanced architecture tailored for the detection of fabricated audio content. MFAAN incorporates multiple parallel paths designed to harness the strengths of different audio representations, including Mel-frequency cepstral coefficients (MFCC), linear-frequency cepstral coefficients (LFCC), and Chroma Short Time Fourier Transform (Chroma-STFT). By synergistically fusing these features, MFAAN achieves a nuanced understanding of audio content, facilitating robust differentiation between genuine and manipulated recordings. Preliminary evaluations of MFAAN on two benchmark datasets, 'In-the-Wild' Audio Deepfake Data and The Fake-or-Real Dataset, demonstrate its superior performance, achieving accuracies of 98.93% and 94.47% respectively. Such results not only underscore the efficacy of MFAAN but also highlight its potential as a pivotal tool in the ongoing battle against deepfake audio content.

Visual dialogue is a challenging task that needs to extract implicit information from both visual (image) and textual (dialogue history) contexts. Classical approaches pay more attention to the integration of the current question, vision knowledge and text knowledge, despising the heterogeneous semantic gaps between the cross-modal information. In the meantime, the concatenation operation has become de-facto standard to the cross-modal information fusion, which has a limited ability in information retrieval. In this paper, we propose a novel Knowledge-Bridge Graph Network (KBGN) model by using graph to bridge the cross-modal semantic relations between vision and text knowledge in fine granularity, as well as retrieving required knowledge via an adaptive information selection mode. Moreover, the reasoning clues for visual dialogue can be clearly drawn from intra-modal entities and inter-modal bridges. Experimental results on VisDial v1.0 and VisDial-Q datasets demonstrate that our model outperforms exiting models with state-of-the-art results.

Video captioning is a challenging task that requires a deep understanding of visual scenes. State-of-the-art methods generate captions using either scene-level or object-level information but without explicitly modeling object interactions. Thus, they often fail to make visually grounded predictions, and are sensitive to spurious correlations. In this paper, we propose a novel spatio-temporal graph model for video captioning that exploits object interactions in space and time. Our model builds interpretable links and is able to provide explicit visual grounding. To avoid unstable performance caused by the variable number of objects, we further propose an object-aware knowledge distillation mechanism, in which local object information is used to regularize global scene features. We demonstrate the efficacy of our approach through extensive experiments on two benchmarks, showing our approach yields competitive performance with interpretable predictions.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司