This paper belongs to a group of work in the intersection of symbolic computation and group analysis aiming for the symbolic analysis of differential equations. The goal is to extract important properties without finding the explicit general solution. In this contribution, we introduce the algorithmic verification of nonlinear superposition properties and its implementation. More exactly, for a system of nonlinear ordinary differential equations of first order with a polynomial right-hand side, we check if the differential system admits a general solution by means of a superposition rule and a certain number of particular solutions. It is based on the theory of Newton polytopes and associated symbolic computation. The developed method provides the basis for the identification of nonlinear superpositions within a given system and for the construction of numerical methods which preserve important algebraic properties at the numerical level.
Kernel techniques are among the most influential approaches in data science and statistics. Under mild conditions, the reproducing kernel Hilbert space associated to a kernel is capable of encoding the independence of $M\ge 2$ random variables. Probably the most widespread independence measure relying on kernels is the so-called Hilbert-Schmidt independence criterion (HSIC; also referred to as distance covariance in the statistics literature). Despite various existing HSIC estimators designed since its introduction close to two decades ago, the fundamental question of the rate at which HSIC can be estimated is still open. In this work, we prove that the minimax optimal rate of HSIC estimation on $\mathbb R^d$ for Borel measures containing the Gaussians with continuous bounded translation-invariant characteristic kernels is $\mathcal O\!\left(n^{-1/2}\right)$. Specifically, our result implies the optimality in the minimax sense of many of the most-frequently used estimators (including the U-statistic, the V-statistic, and the Nystr\"om-based one) on $\mathbb R^d$.
We explore algorithmic aspects of a simply transitive commutative group action coming from the class field theory of imaginary hyperelliptic function fields. Namely, the Jacobian of an imaginary hyperelliptic curve defined over $\mathbb F_q$ acts on a subset of isomorphism classes of Drinfeld modules. We describe an algorithm to compute the group action efficiently. This is a function field analog of the Couveignes-Rostovtsev-Stolbunov group action. We report on an explicit computation done with our proof-of-concept C++/NTL implementation; it took a fraction of a second on a standard computer. We prove that the problem of inverting the group action reduces to the problem of finding isogenies of fixed $\tau$-degree between Drinfeld $\mathbb F_q[X]$-modules, which is solvable in polynomial time thanks to an algorithm by Wesolowski. We give asymptotic complexity bounds for all algorithms presented in this paper.
Robotic manipulation relies on analytical or learned models to simulate the system dynamics. These models are often inaccurate and based on offline information, so that the robot planner is unable to cope with mismatches between the expected and the actual behavior of the system (e.g., the presence of an unexpected obstacle). In these situations, the robot should use information gathered online to correct its planning strategy and adapt to the actual system response. We propose a sampling-based motion planning approach that uses an estimate of the model error and online observations to correct the planning strategy at each new replanning. Our approach adapts the cost function and the sampling bias of a kinodynamic motion planner when the outcome of the executed transitions is different from the expected one (e.g., when the robot unexpectedly collides with an obstacle) so that future trajectories will avoid unreliable motions. To infer the properties of a new transition, we introduce the notion of context-awareness, i.e., we store local environment information for each executed transition and avoid new transitions with context similar to previous unreliable ones. This is helpful for leveraging online information even if the simulated transitions are far (in the state-and-action space) from the executed ones. Simulation and experimental results show that the proposed approach increases the success rate in execution and reduces the number of replannings needed to reach the goal.
A major threat to the peer-review systems of computer science conferences is the existence of "collusion rings" between reviewers. In such collusion rings, reviewers who have also submitted their own papers to the conference work together to manipulate the conference's paper assignment, with the aim of being assigned to review each other's papers. The most straightforward way that colluding reviewers can manipulate the paper assignment is by indicating their interest in each other's papers through strategic paper bidding. One potential approach to solve this important problem would be to detect the colluding reviewers from their manipulated bids, after which the conference can take appropriate action. While prior work has developed effective techniques to detect other kinds of fraud, no research has yet established that detecting collusion rings is even possible. In this work, we tackle the question of whether it is feasible to detect collusion rings from the paper bidding. To answer this question, we conduct empirical analysis of two realistic conference bidding datasets, including evaluations of existing algorithms for fraud detection in other applications. We find that collusion rings can achieve considerable success at manipulating the paper assignment while remaining hidden from detection: for example, in one dataset, undetected colluders are able to achieve assignment to up to 30% of the papers authored by other colluders. In addition, when 10 colluders bid on all of each other's papers, no detection algorithm outputs a group of reviewers with more than 31% overlap with the true colluders. These results suggest that collusion cannot be effectively detected from the bidding using popular existing tools, demonstrating the need to develop more complex detection algorithms as well as those that leverage additional metadata (e.g., reviewer-paper text-similarity scores).
Understanding the dimension dependency of computational complexity in high-dimensional sampling problem is a fundamental problem, both from a practical and theoretical perspective. Compared with samplers with unbiased stationary distribution, e.g., Metropolis-adjusted Langevin algorithm (MALA), biased samplers, e.g., Underdamped Langevin Dynamics (ULD), perform better in low-accuracy cases just because a lower dimension dependency in their complexities. Along this line, Freund et al. (2022) suggest that the modified Langevin algorithm with prior diffusion is able to converge dimension independently for strongly log-concave target distributions. Nonetheless, it remains open whether such property establishes for more general cases. In this paper, we investigate the prior diffusion technique for the target distributions satisfying log-Sobolev inequality (LSI), which covers a much broader class of distributions compared to the strongly log-concave ones. In particular, we prove that the modified Langevin algorithm can also obtain the dimension-independent convergence of KL divergence with different step size schedules. The core of our proof technique is a novel construction of an interpolating SDE, which significantly helps to conduct a more accurate characterization of the discrete updates of the overdamped Langevin dynamics. Our theoretical analysis demonstrates the benefits of prior diffusion for a broader class of target distributions and provides new insights into developing faster sampling algorithms.
This work introduces a flexible and versatile method for the data-efficient yet conservative transmission of covariance matrices, where a matrix element is only transmitted if a so-called triggering condition is satisfied for the element. Here, triggering conditions can be parametrized on a per-element basis, applied simultaneously to yield combined triggering conditions or applied only to certain subsets of elements. This allows, e.g., to specify transmission accuracies for individual elements or to constrain the bandwidth available for the transmission of subsets of elements. Additionally, a methodology for learning triggering condition parameters from an application-specific dataset is presented. The performance of the proposed approach is quantitatively assessed in terms of data reduction and conservativeness using estimate data derived from real-world vehicle trajectories from the InD-dataset, demonstrating substantial data reduction ratios with minimal over-conservativeness. The feasibility of learning triggering condition parameters is demonstrated.
This paper presents an algorithmic method that, given a positive integer $j$, generates the $j$-th convergence stair containing all natural numbers from where the Collatz conjecture holds by exactly $j$ applications of the Collatz function. To this end, we present a novel formulation of the Collatz conjecture as a concurrent program, and provide the general case specification of the $j$-th convergence stair for any $j > 0$. The proposed specifications provide a layered and linearized orientation of Collatz numbers organized in an infinite set of infinite binary trees. To the best of our knowledge, this is the first time that such a general specification is provided, which can have significant applications in analyzing and testing the behaviors of complex non-linear systems. We have implemented this method as a software tool that generates the Collatz numbers of individual stairs. We also show that starting from any value in any convergence stair the conjecture holds. However, to prove the conjecture, one has to show that every natural number will appear in some stair; i.e., the union of all stairs is equal to the set of natural numbers, which remains an open problem.
The fusion of causal models with deep learning introducing increasingly intricate data sets, such as the causal associations within images or between textual components, has surfaced as a focal research area. Nonetheless, the broadening of original causal concepts and theories to such complex, non-statistical data has been met with serious challenges. In response, our study proposes redefinitions of causal data into three distinct categories from the standpoint of causal structure and representation: definite data, semi-definite data, and indefinite data. Definite data chiefly pertains to statistical data used in conventional causal scenarios, while semi-definite data refers to a spectrum of data formats germane to deep learning, including time-series, images, text, and others. Indefinite data is an emergent research sphere inferred from the progression of data forms by us. To comprehensively present these three data paradigms, we elaborate on their formal definitions, differences manifested in datasets, resolution pathways, and development of research. We summarize key tasks and achievements pertaining to definite and semi-definite data from myriad research undertakings, present a roadmap for indefinite data, beginning with its current research conundrums. Lastly, we classify and scrutinize the key datasets presently utilized within these three paradigms.
As soon as abstract mathematical computations were adapted to computation on digital computers, the problem of efficient representation, manipulation, and communication of the numerical values in those computations arose. Strongly related to the problem of numerical representation is the problem of quantization: in what manner should a set of continuous real-valued numbers be distributed over a fixed discrete set of numbers to minimize the number of bits required and also to maximize the accuracy of the attendant computations? This perennial problem of quantization is particularly relevant whenever memory and/or computational resources are severely restricted, and it has come to the forefront in recent years due to the remarkable performance of Neural Network models in computer vision, natural language processing, and related areas. Moving from floating-point representations to low-precision fixed integer values represented in four bits or less holds the potential to reduce the memory footprint and latency by a factor of 16x; and, in fact, reductions of 4x to 8x are often realized in practice in these applications. Thus, it is not surprising that quantization has emerged recently as an important and very active sub-area of research in the efficient implementation of computations associated with Neural Networks. In this article, we survey approaches to the problem of quantizing the numerical values in deep Neural Network computations, covering the advantages/disadvantages of current methods. With this survey and its organization, we hope to have presented a useful snapshot of the current research in quantization for Neural Networks and to have given an intelligent organization to ease the evaluation of future research in this area.
We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.