亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The sixth generation (6G) mobile communication networks are expected to offer a new paradigm of cellular integrated sensing and communication (ISAC). However, due to the intrinsic difference between sensing and communication in terms of coverage requirement, current cellular networks that are deliberately planned mainly for communication coverage are difficult to achieve seamless sensing coverage. To address this issue, this paper studies the beamforming optimization towards seamless sensing coverage for a basic bi-static ISAC system, while ensuring that the communication requirements of multiple users equipment (UEs) are satisfied. Towards this end, an optimization problem is formulated to maximize the worst-case sensing signal-to-noise ratio (SNR) in a prescribed coverage region, subject to the signal-to-interference-plus-noise ratio (SINR) requirement for each UE. To gain some insights, we first investigate the special case with one single UE and one single sensing point, for which a closed-from expression of the optimal beamforming is obtained. For the general case with multiple communication UEs and contiguous regional sensing coverage, an efficient algorithm based on successive convex approximation (SCA) is proposed to solve the non-convex beamforming optimization problem. Numerical results demonstrate that the proposed design is able to achieve seamless sensing coverage in the prescribed region, while guaranteeing the communication requirements of the UEs.

相關內容

Integration:Integration, the VLSI Journal。 Explanation:集成,VLSI雜志。 Publisher:Elsevier。 SIT:

Federated learning (FL) aims to minimize the communication complexity of training a model over heterogeneous data distributed across many clients. A common approach is local methods, where clients take multiple optimization steps over local data before communicating with the server (e.g., FedAvg). Local methods can exploit similarity between clients' data. However, in existing analyses, this comes at the cost of slow convergence in terms of the dependence on the number of communication rounds R. On the other hand, global methods, where clients simply return a gradient vector in each round (e.g., SGD), converge faster in terms of R but fail to exploit the similarity between clients even when clients are homogeneous. We propose FedChain, an algorithmic framework that combines the strengths of local methods and global methods to achieve fast convergence in terms of R while leveraging the similarity between clients. Using FedChain, we instantiate algorithms that improve upon previously known rates in the general convex and PL settings, and are near-optimal (via an algorithm-independent lower bound that we show) for problems that satisfy strong convexity. Empirical results support this theoretical gain over existing methods.

This paper investigates a new downlink nonorthogonal multiple access (NOMA) system, where a multiantenna unmanned aerial vehicle (UAV) is powered by wireless power transfer (WPT) and serves as the base station for multiple pairs of ground users (GUs) running NOMA in each pair. An energy efficiency (EE) maximization problem is formulated to jointly optimize the WPT time and the placement for the UAV, and the allocation of the UAV's transmit power between different NOMA user pairs and within each pair. To efficiently solve this nonconvex problem, we decompose the problem into three subproblems using block coordinate descent. For the subproblem of intra-pair power allocation within each NOMA user pair, we construct a supermodular game with confirmed convergence to a Nash equilibrium. Given the intra-pair power allocation, successive convex approximation is applied to convexify and solve the subproblem of WPT time allocation and inter-pair power allocation between the user pairs. Finally, we solve the subproblem of UAV placement by using the Lagrange multiplier method. Simulations show that our approach can substantially outperform its alternatives that do not use NOMA and WPT techniques or that do not optimize the UAV location.

Interacting agents receive public information at no cost and flexibly acquire private information at a cost proportional to entropy reduction. When a policymaker provides more public information, agents acquire less private information, thus lowering information costs. Does more public information raise or reduce uncertainty faced by agents? Is it beneficial or detrimental to welfare? To address these questions, we examine the impacts of public information on flexible information acquisition in a linear-quadratic-Gaussian game with arbitrary quadratic material welfare. More public information raises uncertainty if and only if the game exhibits strategic complementarity, which can be harmful to welfare. However, when agents acquire a large amount of information, more provision of public information increases welfare through a substantial reduction in the cost of information. We give a necessary and sufficient condition for welfare to increase with public information and identify optimal public information disclosure, which is either full or partial disclosure depending upon the welfare function and the slope of the best response.

We consider the question of adaptive data analysis within the framework of convex optimization. We ask how many samples are needed in order to compute $\epsilon$-accurate estimates of $O(1/\epsilon^2)$ gradients queried by gradient descent, and we provide two intermediate answers to this question. First, we show that for a general analyst (not necessarily gradient descent) $\Omega(1/\epsilon^3)$ samples are required. This rules out the possibility of a foolproof mechanism. Our construction builds upon a new lower bound (that may be of interest of its own right) for an analyst that may ask several non adaptive questions in a batch of fixed and known $T$ rounds of adaptivity and requires a fraction of true discoveries. We show that for such an analyst $\Omega (\sqrt{T}/\epsilon^2)$ samples are necessary. Second, we show that, under certain assumptions on the oracle, in an interaction with gradient descent $\tilde \Omega(1/\epsilon^{2.5})$ samples are necessary. Our assumptions are that the oracle has only \emph{first order access} and is \emph{post-hoc generalizing}. First order access means that it can only compute the gradients of the sampled function at points queried by the algorithm. Our assumption of \emph{post-hoc generalization} follows from existing lower bounds for statistical queries. More generally then, we provide a generic reduction from the standard setting of statistical queries to the problem of estimating gradients queried by gradient descent. These results are in contrast with classical bounds that show that with $O(1/\epsilon^2)$ samples one can optimize the population risk to accuracy of $O(\epsilon)$ but, as it turns out, with spurious gradients.

Integrated sensing and communication (ISAC) creates a platform to exploit the synergy between two powerful functionalities that have been developing separately. However, the interference management and resource allocation between sensing and communication have not been fully studied. In this paper, we consider the design of perceptive mobile networks (PMNs) by adding sensing capability to current cellular networks. To avoid the full-duplex operation, we propose the PMN with distributed target monitoring terminals (TMTs) where passive TMTs are deployed over wireless networks to locate the sensing target (ST). We jointly optimize the transmit and receive beamformers towards the communication user terminals (UEs) and the ST by alternating-optimization (AO) and prove its convergence. To reduce computation complexity and obtain physical insights, we further investigate the use of linear transceivers, including zero forcing and beam synthesis (B-syn). Our analysis revealed interesting physical insights regarding interference management and resource allocation between sensing and communication: 1) instead of forming dedicated sensing signals, it is more efficient to redesign the communication signals for both communication and sensing purposes and "leak" communication energy for sensing; 2) the amount of energy leakage from one UE to the ST depends on their relative locations.

Molecular communication has a key role to play in future medical applications, including detecting, analyzing, and addressing infectious disease outbreaks. Overcoming inter-symbol interference (ISI) is one of the key challenges in the design of molecular communication systems. In this paper, we propose to optimize the detection interval to minimize the impact of ISI while ensuring the accurate detection of the transmitted information symbol, which is suitable for the absorbing and passive receivers. For tractability, based on the signal-to-interference difference (SID) and signal-to-interference-and-noise amplitude ratio (SINAR), we propose a modified-SINAR (mSINAR) to measure the bit error rate (BER) performance for the molecular communication system with a variable detection interval. Besides, we derive the optimal detection interval in closed form. Using simulation results, we show that the BER performance of our proposed mSINAR scheme is superior to the competing schemes, and achieves similar performance to optimal intervals found by the exhaustive search.

Integrated Sensing and Communication (ISAC) is recognized as a promising technology for the next-generation wireless networks. In this paper, we provide a general framework to reveal the fundamental tradeoff between sensing and communications (S&C), where a unified ISAC waveform is exploited to perform dual-functional tasks. In particular, we define the Cramer-Rao bound (CRB)-rate region to characterize the S&C tradeoff, and propose a pentagon inner bound of the region. We show that the two corner points of the CRB-rate region can be achieved by the conventional Gaussian waveform and a novel strategy referred to as successive hypersphere coding, respectively. Moreover, we also offer our insights into transmission approaches achieving the boundary of the CRB-rate region, namely the Shannon-Fisher information flow.

The intelligent reflecting surface (IRS) alters the behavior of wireless media and, consequently, has potential to improve the performance and reliability of wireless systems such as communications and radar remote sensing. Recently, integrated sensing and communications (ISAC) has been widely studied as a means to efficiently utilize spectrum and thereby save cost and power. This article investigates the role of IRS in the future ISAC paradigms. While there is a rich heritage of recent research into IRS-assisted communications, the IRS-assisted radars and ISAC remain relatively unexamined. We discuss the putative advantages of IRS deployment, such as coverage extension, interference suppression, and enhanced parameter estimation, for both communications and radar. We introduce possible IRS-assisted ISAC scenarios with common and dedicated surfaces. The article provides an overview of related signal processing techniques and the design challenges, such as wireless channel acquisition, waveform design, and security.

The performance of a quantum information processing protocol is ultimately judged by distinguishability measures that quantify how distinguishable the actual result of the protocol is from the ideal case. The most prominent distinguishability measures are those based on the fidelity and trace distance, due to their physical interpretations. In this paper, we propose and review several algorithms for estimating distinguishability measures based on trace distance and fidelity. The algorithms can be used for distinguishing quantum states, channels, and strategies (the last also known in the literature as "quantum combs"). The fidelity-based algorithms offer novel physical interpretations of these distinguishability measures in terms of the maximum probability with which a single prover (or competing provers) can convince a verifier to accept the outcome of an associated computation. We simulate many of these algorithms by using a variational approach with parameterized quantum circuits. We find that the simulations converge well in both the noiseless and noisy scenarios, for all examples considered. Furthermore, the noisy simulations exhibit a parameter noise resilience.

Training self-driving systems to be robust to the long-tail of driving scenarios is a critical problem. Model-based approaches leverage simulation to emulate a wide range of scenarios without putting users at risk in the real world. One promising path to faithful simulation is to train a forward model of the world to predict the future states of both the environment and the ego-vehicle given past states and a sequence of actions. In this paper, we argue that it is beneficial to model the state of the ego-vehicle, which often has simple, predictable and deterministic behavior, separately from the rest of the environment, which is much more complex and highly multimodal. We propose to model the ego-vehicle using a simple and differentiable kinematic model, while training a stochastic convolutional forward model on raster representations of the state to predict the behavior of the rest of the environment. We explore several configurations of such decoupled models, and evaluate their performance both with Model Predictive Control (MPC) and direct policy learning. We test our methods on the task of highway driving and demonstrate lower crash rates and better stability. The code is available at //github.com/vladisai/pytorch-PPUU/tree/ICLR2022.

北京阿比特科技有限公司