亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

With the exponentially scaled World Wide Web, the standard HTTP protocol has started showing its limitations. With the increased amount of data duplication & accidental deletion of files on the Internet, the P2P file system called IPFS completely changes the way files are stored. IPFS is a file storage protocol allowing files to be stored on decentralized systems. In the HTTP client-server protocol, files are downloaded from a single source. With files stored on a decentralized network, IPFS allows packet retrieval from multiple sources, simultaneously saving considerable bandwidth. IPFS uses a content-addressed block storage model with content-addressed hyperlinks. Large amounts of data is addressable with IPFS with the immutable and permanent IPFS links with meta-data stored as Blockchain transactions. This timestamps and secures the data, instead of having to put it on the chain itself. Our paper proposes a model that uses the decentralized file storage system of IPFS, and the integrity preservation properties of the Blockchain, to store and distribute data on the Web.

相關內容

P2P:IEEE International Conference on Peer-to-Peer Computing。 Explanation:IEEE對等計算國際會議。 Publisher:IEEE。 SIT:

We consider a semiparametric partly linear model identified by instrumental variables. We propose an estimation method that does not smooth on the instruments and we extend the Landweber-Fridman regularization scheme to the estimation of this semiparametric model. We then show the asymptotic normality of the parametric estimator and obtain the convergence rate for the nonparametric estimator. Our estimator that does not smooth on the instruments coincides with a typical estimator that does smooth on the instruments but keeps the respective bandwidth fixed as the sample size increases. We propose a data driven method for the selection of the regularization parameter, and in a simulation study we show the attractive performance of our estimators.

Emerson-Lei conditions have recently attracted attention due to their succinctness and compositionality properties. In the current work, we show how infinite-duration games with Emerson-Lei objectives can be analyzed in two different ways. First, we show that the Zielonka tree of the Emerson-Lei condition gives rise naturally to a new reduction to parity games. This reduction, however, does not result in optimal analysis. Second, we show based on the first reduction (and the Zielonka tree) how to provide a direct fixpoint-based characterization of the winning region. The fixpoint-based characterization allows for symbolic analysis. It generalizes the solutions of games with known winning conditions such as B\"uchi, GR[1], parity, Streett, Rabin and Muller objectives, and in the case of these conditions reproduces previously known symbolic algorithms and complexity results. We also show how the capabilities of the proposed algorithm can be exploited in reactive synthesis, suggesting a new expressive fragment of LTL that can be handled symbolically. Our fragment combines a safety specification and a liveness part. The safety part is unrestricted and the liveness part allows to define Emerson-Lei conditions on occurrences of letters. The symbolic treatment is enabled due to the simplicity of determinization in the case of safety languages and by using our new algorithm for game solving. This approach maximizes the number of steps solved symbolically in order to maximize the potential for efficient symbolic implementations.

The conventional approach to the general Partial Information Decomposition (PID) problem has been redundancy-based: specifying a measure of redundant information between collections of source variables induces a PID via Moebius-Inversion over the so called redundancy lattice. Despite the prevalence of this method, there has been ongoing interest in examining the problem through the lens of different base-concepts of information, such as synergy, unique information, or union information. Yet, a comprehensive understanding of the logical organization of these different based-concepts and their associated PIDs remains elusive. In this work, we apply the mereological formulation of PID that we introduced in a recent paper to shed light on this problem. Within the mereological approach base-concepts can be expressed in terms of conditions phrased in formal logic on the specific parthood relations between the PID components and the different mutual information terms. We set forth a general pattern of these logical conditions of which all PID base-concepts in the literature are special cases and that also reveals novel base-concepts, in particular a concept we call "vulnerable information".

The assumption of conditional independence among observed variables, primarily used in the Variational Autoencoder (VAE) decoder modeling, has limitations when dealing with high-dimensional datasets or complex correlation structures among observed variables. To address this issue, we introduced the Cramer-Wold distance regularization, which can be computed in a closed-form, to facilitate joint distributional learning for high-dimensional datasets. Additionally, we introduced a two-step learning method to enable flexible prior modeling and improve the alignment between the aggregated posterior and the prior distribution. Furthermore, we provide theoretical distinctions from existing methods within this category. To evaluate the synthetic data generation performance of our proposed approach, we conducted experiments on high-dimensional datasets with multiple categorical variables. Given that many readily available datasets and data science applications involve such datasets, our experiments demonstrate the effectiveness of our proposed methodology.

We address the problem of handling provenance information in ELHr ontologies. We consider a setting recently introduced for ontology-based data access, based on semirings and extending classical data provenance, in which ontology axioms are annotated with provenance tokens. A consequence inherits the provenance of the axioms involved in deriving it, yielding a provenance polynomial as an annotation. We analyse the semantics for the ELHr case and show that the presence of conjunctions poses various difficulties for handling provenance, some of which are mitigated by assuming multiplicative idempotency of the semiring. Under this assumption, we study three problems: ontology completion with provenance, computing the set of relevant axioms for a consequence, and query answering.

Language Models (LMs) often must integrate facts they memorized in pretraining with new information that appears in a given context. These two sources can disagree, causing competition within the model, and it is unclear how an LM will resolve the conflict. On a dataset that queries for knowledge of world capitals, we investigate both distributional and mechanistic determinants of LM behavior in such situations. Specifically, we measure the proportion of the time an LM will use a counterfactual prefix (e.g., "The capital of Poland is London") to overwrite what it learned in pretraining ("Warsaw"). On Pythia and GPT2, the training frequency of both the query country ("Poland") and the in-context city ("London") highly affect the models' likelihood of using the counterfactual. We then use head attribution to identify individual attention heads that either promote the memorized answer or the in-context answer in the logits. By scaling up or down the value vector of these heads, we can control the likelihood of using the in-context answer on new data. This method can increase the rate of generating the in-context answer to 88\% of the time simply by scaling a single head at runtime. Our work contributes to a body of evidence showing that we can often localize model behaviors to specific components and provides a proof of concept for how future methods might control model behavior dynamically at runtime.

This work presents an algorithm for tracking the shape of multiple entangling Deformable Linear Objects (DLOs) from a sequence of RGB-D images. This algorithm runs in real-time and improves on previous single-DLO tracking approaches by enabling tracking of multiple objects. This is achieved using Global-Local Topology Preservation (GLTP). This work uses the geodesic distance in GLTP to define the distance between separate objects and the distance between different parts of the same object. Tracking multiple entangling DLOs is demonstrated experimentally. The source code is publicly released.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

Textual entailment is a fundamental task in natural language processing. Most approaches for solving the problem use only the textual content present in training data. A few approaches have shown that information from external knowledge sources like knowledge graphs (KGs) can add value, in addition to the textual content, by providing background knowledge that may be critical for a task. However, the proposed models do not fully exploit the information in the usually large and noisy KGs, and it is not clear how it can be effectively encoded to be useful for entailment. We present an approach that complements text-based entailment models with information from KGs by (1) using Personalized PageR- ank to generate contextual subgraphs with reduced noise and (2) encoding these subgraphs using graph convolutional networks to capture KG structure. Our technique extends the capability of text models exploiting structural and semantic information found in KGs. We evaluate our approach on multiple textual entailment datasets and show that the use of external knowledge helps improve prediction accuracy. This is particularly evident in the challenging BreakingNLI dataset, where we see an absolute improvement of 5-20% over multiple text-based entailment models.

北京阿比特科技有限公司