亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Emerson-Lei conditions have recently attracted attention due to their succinctness and compositionality properties. In the current work, we show how infinite-duration games with Emerson-Lei objectives can be analyzed in two different ways. First, we show that the Zielonka tree of the Emerson-Lei condition gives rise naturally to a new reduction to parity games. This reduction, however, does not result in optimal analysis. Second, we show based on the first reduction (and the Zielonka tree) how to provide a direct fixpoint-based characterization of the winning region. The fixpoint-based characterization allows for symbolic analysis. It generalizes the solutions of games with known winning conditions such as B\"uchi, GR[1], parity, Streett, Rabin and Muller objectives, and in the case of these conditions reproduces previously known symbolic algorithms and complexity results. We also show how the capabilities of the proposed algorithm can be exploited in reactive synthesis, suggesting a new expressive fragment of LTL that can be handled symbolically. Our fragment combines a safety specification and a liveness part. The safety part is unrestricted and the liveness part allows to define Emerson-Lei conditions on occurrences of letters. The symbolic treatment is enabled due to the simplicity of determinization in the case of safety languages and by using our new algorithm for game solving. This approach maximizes the number of steps solved symbolically in order to maximize the potential for efficient symbolic implementations.

相關內容

Uncertainty quantification is a pivotal field that contributes to the realization of reliable and robust systems. By providing complementary information, it becomes instrumental in fortifying safe decisions, particularly within high-risk applications. Nevertheless, a comprehensive understanding of the advantages and limitations inherent in various methods within the medical imaging field necessitates further research coupled with in-depth analysis. In this paper, we explore Conformal Prediction, an emerging distribution-free uncertainty quantification technique, along with Monte Carlo Dropout and Evidential Deep Learning methods. Our comprehensive experiments provide a comparative performance analysis for skin lesion classification tasks across the three quantification methods. Furthermore, We present insights into the effectiveness of each method in handling Out-of-Distribution samples from domain-shifted datasets. Based on our experimental findings, our conclusion highlights the robustness and consistent performance of conformal prediction across diverse conditions. This positions it as the preferred choice for decision-making in safety-critical applications.

Recent years have witnessed the rapid progress and broad application of diffusion probabilistic models (DPMs). Sampling from DPMs can be viewed as solving an ordinary differential equation (ODE). Despite the promising performance, the generation of DPMs usually consumes much time due to the large number of function evaluations (NFE). Though recent works have accelerated the sampling to around 20 steps with high-order solvers, the sample quality with less than 10 NFE can still be improved. In this paper, we propose a unified sampling framework (USF) to study the optional strategies for solver. Under this framework, we further reveal that taking different solving strategies at different timesteps may help further decrease the truncation error, and a carefully designed \emph{solver schedule} has the potential to improve the sample quality by a large margin. Therefore, we propose a new sampling framework based on the exponential integral formulation that allows free choices of solver strategy at each step and design specific decisions for the framework. Moreover, we propose $S^3$, a predictor-based search method that automatically optimizes the solver schedule to get a better time-quality trade-off of sampling. We demonstrate that $S^3$ can find outstanding solver schedules which outperform the state-of-the-art sampling methods on CIFAR-10, CelebA, ImageNet, and LSUN-Bedroom datasets. Specifically, we achieve 2.69 FID with 10 NFE and 6.86 FID with 5 NFE on CIFAR-10 dataset, outperforming the SOTA method significantly. We further apply $S^3$ to Stable-Diffusion model and get an acceleration ratio of 2$\times$, showing the feasibility of sampling in very few steps without retraining the neural network.

In the allocation of indivisible goods, a prominent fairness notion is envy-freeness up to one good (EF1). We initiate the study of reachability problems in fair division by investigating the problem of whether one EF1 allocation can be reached from another EF1 allocation via a sequence of exchanges such that every intermediate allocation is also EF1. We show that two EF1 allocations may not be reachable from each other even in the case of two agents, and deciding their reachability is PSPACE-complete in general. On the other hand, we prove that reachability is guaranteed for two agents with identical or binary utilities as well as for any number of agents with identical binary utilities. We also examine the complexity of deciding whether there is an EF1 exchange sequence that is optimal in the number of exchanges required.

The growing presence of Artificial Intelligence (AI) in various sectors necessitates systems that accurately reflect societal diversity. This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems, addressing the current disconnect between ethical guidelines and their practical implementation. A significant challenge in AI development is the effective operationalization of D&I principles, which is critical to prevent the reinforcement of existing biases and ensure equity across AI applications. This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI). The approach aims to facilitate the representation of the needs of diverse users in the requirements analysis process for AI software. The proposed framework is expected to lead to a comprehensive persona repository with diverse attributes that inform the development process with detailed user narratives. This research contributes to the development of an inclusive AI paradigm that ensures future technological advances are designed with a commitment to the diverse fabric of humanity.

One of the motivations for explainable AI is to allow humans to make better and more informed decisions regarding the use and deployment of AI models. But careful evaluations are needed to assess whether this expectation has been fulfilled. Current evaluations mainly focus on algorithmic properties of explanations, and those that involve human subjects often employ subjective questions to test human's perception of explanation usefulness, without being grounded in objective metrics and measurements. In this work, we evaluate whether explanations can improve human decision-making in practical scenarios of machine learning model development. We conduct a mixed-methods user study involving image data to evaluate saliency maps generated by SmoothGrad, GradCAM, and an oracle explanation on two tasks: model selection and counterfactual simulation. To our surprise, we did not find evidence of significant improvement on these tasks when users were provided with any of the saliency maps, even the synthetic oracle explanation designed to be simple to understand and highly indicative of the answer. Nonetheless, explanations did help users more accurately describe the models. These findings suggest caution regarding the usefulness and potential for misunderstanding in saliency-based explanations.

In causal inference, it is a fundamental task to estimate the causal effect from observational data. However, latent confounders pose major challenges in causal inference in observational data, for example, confounding bias and M-bias. Recent data-driven causal effect estimators tackle the confounding bias problem via balanced representation learning, but assume no M-bias in the system, thus they fail to handle the M-bias. In this paper, we identify a challenging and unsolved problem caused by a variable that leads to confounding bias and M-bias simultaneously. To address this problem with co-occurring M-bias and confounding bias, we propose a novel Disentangled Latent Representation learning framework for learning latent representations from proxy variables for unbiased Causal effect Estimation (DLRCE) from observational data. Specifically, DLRCE learns three sets of latent representations from the measured proxy variables to adjust for the confounding bias and M-bias. Extensive experiments on both synthetic and three real-world datasets demonstrate that DLRCE significantly outperforms the state-of-the-art estimators in the case of the presence of both confounding bias and M-bias.

When interest lies in the progression of a disease rather than on a single outcome, non-homogeneous multi-state Markov models constitute a natural and powerful modelling approach. Constant monitoring of a phenomenon of interest is often unfeasible, hence leading to an intermittent observation scheme. This setting is challenging and existing models and their implementations do not yet allow for flexible enough specifications that can fully exploit the information contained in the data. To widen significantly the scope of multi-state Markov models, we propose a closed-form expression for the local curvature information of a key quantity, the transition probability matrix. Such development allows one to model any type of multi-state Markov process, where the transition intensities are flexibly specified as functions of additive predictors. Parameter estimation is carried out through a carefully structured, stable penalised likelihood approach. The methodology is exemplified via two case studies that aim at modelling the onset of cardiac allograft vasculopathy, and cognitive decline. To support applicability and reproducibility, all developed tools are implemented in the R package flexmsm.

In fairness audits, a standard objective is to detect whether a given algorithm performs substantially differently between subgroups. Properly powering the statistical analysis of such audits is crucial for obtaining informative fairness assessments, as it ensures a high probability of detecting unfairness when it exists. However, limited guidance is available on the amount of data necessary for a fairness audit, lacking directly applicable results concerning commonly used fairness metrics. Additionally, the consideration of unequal subgroup sample sizes is also missing. In this tutorial, we address these issues by providing guidance on how to determine the required subgroup sample sizes to maximize the statistical power of hypothesis tests for detecting unfairness. Our findings are applicable to audits of binary classification models and multiple fairness metrics derived as summaries of the confusion matrix. Furthermore, we discuss other aspects of audit study designs that can increase the reliability of audit results.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司