The growing presence of Artificial Intelligence (AI) in various sectors necessitates systems that accurately reflect societal diversity. This study seeks to envision the operationalization of the ethical imperatives of diversity and inclusion (D&I) within AI ecosystems, addressing the current disconnect between ethical guidelines and their practical implementation. A significant challenge in AI development is the effective operationalization of D&I principles, which is critical to prevent the reinforcement of existing biases and ensure equity across AI applications. This paper proposes a vision of a framework for developing a tool utilizing persona-based simulation by Generative AI (GenAI). The approach aims to facilitate the representation of the needs of diverse users in the requirements analysis process for AI software. The proposed framework is expected to lead to a comprehensive persona repository with diverse attributes that inform the development process with detailed user narratives. This research contributes to the development of an inclusive AI paradigm that ensures future technological advances are designed with a commitment to the diverse fabric of humanity.
In recent years, there has been an increasing recognition that when machine learning (ML) algorithms are used to automate decisions, they may mistreat individuals or groups, with legal, ethical, or economic implications. Recommender systems are prominent examples of these machine learning (ML) systems that aid users in making decisions. The majority of past literature research on RS fairness treats user and item fairness concerns independently, ignoring the fact that recommender systems function in a two-sided marketplace. In this paper, we propose CP-FairRank, an optimization-based re-ranking algorithm that seamlessly integrates fairness constraints from both the consumer and producer side in a joint objective framework. The framework is generalizable and may take into account varied fairness settings based on group segmentation, recommendation model selection, and domain, which is one of its key characteristics. For instance, we demonstrate that the system may jointly increase consumer and producer fairness when (un)protected consumer groups are defined on the basis of their activity level and main-streamness, while producer groups are defined according to their popularity level. For empirical validation, through large-scale on eight datasets and four mainstream collaborative filtering (CF) recommendation models, we demonstrate that our proposed strategy is able to improve both consumer and producer fairness without compromising or very little overall recommendation quality, demonstrating the role algorithms may play in avoiding data biases.
Modern Standard Arabic (MSA) nominals present many morphological and lexical modeling challenges that have not been consistently addressed previously. This paper attempts to define the space of such challenges, and leverage a recently proposed morphological framework to build a comprehensive and extensible model for MSA nominals. Our model design addresses the nominals' intricate morphotactics, as well as their paradigmatic irregularities. Our implementation showcases enhanced accuracy and consistency compared to a commonly used MSA morphological analyzer and generator. We make our models publicly available.
Anthropogenic influences have been linked to tropical cyclone (TC) poleward migration, TC extreme precipitation, and an increased proportion of major hurricanes [1, 2, 3, 4]. Understanding past TC trends and variability is critical for projecting future TC impacts on human society considering the changing climate [5]. However, past trends of TC structure/energy remain uncertain due to limited observations; subjective-analyzed and spatiotemporal-heterogeneous "best-track" datasets lead to reduced confidence in the assessed TC repose to climate change [6, 7]. Here, we use deep learning to reconstruct past "observations" and yield an objective global TC wind profile dataset during 1981 to 2020, facilitating a comprehensive examination of TC structure/energy. By training with uniquely labeled data integrating best tracks and numerical model analysis of 2004 to 2018 TCs, our model converts multichannel satellite imagery to a 0-750-km wind profile of axisymmetric surface winds. The model performance is verified to be sufficient for climate studies by comparing it to independent satellite-radar surface winds. Based on the new homogenized dataset, the major TC proportion has increased by ~13% in the past four decades. Moreover, the proportion of extremely high-energy TCs has increased by ~25%, along with an increasing trend (> one standard deviation of the 40-y variability) of the mean total energy of high-energy TCs. Although the warming ocean favors TC intensification, the TC track migration to higher latitudes and altered environments further affect TC structure/energy. This new deep learning method/dataset reveals novel trends regarding TC structure extremes and may help verify simulations/studies regarding TCs in the changing climate.
We investigate the problem of jointly testing multiple hypotheses and estimating a random parameter of the underlying distribution in a sequential setup. The aim is to jointly infer the true hypothesis and the true parameter while using on average as few samples as possible and keeping the detection and estimation errors below predefined levels. Based on mild assumptions on the underlying model, we propose an asymptotically optimal procedure, i.e., a procedure that becomes optimal when the tolerated detection and estimation error levels tend to zero. The implementation of the resulting asymptotically optimal stopping rule is computationally cheap and, hence, applicable for high-dimensional data. We further propose a projected quasi-Newton method to optimally choose the coefficients that parameterize the instantaneous cost function such that the constraints are fulfilled with equality. The proposed theory is validated by numerical examples.
We consider (stochastic) subgradient methods for strongly convex but potentially nonsmooth non-Lipschitz optimization. We provide new equivalent dual descriptions (in the style of dual averaging) for the classic subgradient method, the proximal subgradient method, and the switching subgradient method. These equivalences enable $O(1/T)$ convergence guarantees in terms of both their classic primal gap and a not previously analyzed dual gap for strongly convex optimization. Consequently, our theory provides these classic methods with simple, optimal stopping criteria and optimality certificates at no added computational cost. Our results apply to a wide range of stepsize selections and of non-Lipschitz ill-conditioned problems where the early iterations of the subgradient method may diverge exponentially quickly (a phenomenon which, to the best of our knowledge, no prior works address). Even in the presence of such undesirable behaviors, our theory still ensures and bounds eventual convergence.
Safety measures need to be systemically investigated to what extent they evaluate the intended performance of Deep Neural Networks (DNNs) for critical applications. Due to a lack of verification methods for high-dimensional DNNs, a trade-off is needed between accepted performance and handling of out-of-distribution (OOD) samples. This work evaluates rejecting outputs from semantic segmentation DNNs by applying a Mahalanobis distance (MD) based on the most probable class-conditional Gaussian distribution for the predicted class as an OOD score. The evaluation follows three DNNs trained on the Cityscapes dataset and tested on four automotive datasets and finds that classification risk can drastically be reduced at the cost of pixel coverage, even when applied on unseen datasets. The applicability of our findings will support legitimizing safety measures and motivate their usage when arguing for safe usage of DNNs in automotive perception.
Despite the utility of Large Language Models (LLMs) across a wide range of tasks and scenarios, developing a method for reliably evaluating LLMs across varied contexts continues to be challenging. Modern evaluation approaches often use LLMs to assess responses generated by LLMs. However, the meta-evaluation conducted to assess the effectiveness of these LLMs as evaluators is typically constrained by the coverage of existing benchmarks or requires extensive human annotation. This underscores the urgency of methods for scalable meta-evaluation that can effectively, reliably, and efficiently evaluate the performance of LLMs as evaluators across diverse tasks and scenarios, particularly in potentially new, user-defined scenarios. To fill this gap, we propose ScaleEval, an agent-debate-assisted meta-evaluation framework that leverages the capabilities of multiple communicative LLM agents. This framework supports multi-round discussions to assist human annotators in discerning the most capable LLMs as evaluators, which significantly eases their workload in cases that used to require large-scale annotations during meta-evaluation. We release the code for our framework, which is publicly available at: \url{//github.com/GAIR-NLP/scaleeval}.
Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.