Safety measures need to be systemically investigated to what extent they evaluate the intended performance of Deep Neural Networks (DNNs) for critical applications. Due to a lack of verification methods for high-dimensional DNNs, a trade-off is needed between accepted performance and handling of out-of-distribution (OOD) samples. This work evaluates rejecting outputs from semantic segmentation DNNs by applying a Mahalanobis distance (MD) based on the most probable class-conditional Gaussian distribution for the predicted class as an OOD score. The evaluation follows three DNNs trained on the Cityscapes dataset and tested on four automotive datasets and finds that classification risk can drastically be reduced at the cost of pixel coverage, even when applied on unseen datasets. The applicability of our findings will support legitimizing safety measures and motivate their usage when arguing for safe usage of DNNs in automotive perception.
Though numerous solvers have been proposed for the MaxSAT problem, and the benchmark environment such as MaxSAT Evaluations provides a platform for the comparison of the state-of-the-art solvers, existing assessments were usually evaluated based on the quality, e.g., fitness, of the best-found solutions obtained within a given running time budget. However, concerning solely the final obtained solutions regarding specific time budgets may restrict us from comprehending the behavior of the solvers along the convergence process. This paper demonstrates that Empirical Cumulative Distribution Functions can be used to compare MaxSAT local search solvers' anytime performance across multiple problem instances and various time budgets. The assessment reveals distinctions in solvers' performance and displays that the (dis)advantages of solvers adjust along different running times. This work also exhibits that the quantitative and high variance assessment of anytime performance can guide machines, i.e., automatic configurators, to search for better parameter settings. Our experimental results show that the hyperparameter optimization tool, i.e., SMAC, generally achieves better parameter settings of local search when using the anytime performance as the cost function, compared to using the fitness of the best-found solutions.
While many Machine Learning methods were developed or transposed on Riemannian manifolds to tackle data with known non Euclidean geometry, Optimal Transport (OT) methods on such spaces have not received much attention. The main OT tool on these spaces is the Wasserstein distance which suffers from a heavy computational burden. On Euclidean spaces, a popular alternative is the Sliced-Wasserstein distance, which leverages a closed-form solution of the Wasserstein distance in one dimension, but which is not readily available on manifolds. In this work, we derive general constructions of Sliced-Wasserstein distances on Cartan-Hadamard manifolds, Riemannian manifolds with non-positive curvature, which include among others Hyperbolic spaces or the space of Symmetric Positive Definite matrices. Then, we propose different applications. Additionally, we derive non-parametric schemes to minimize these new distances by approximating their Wasserstein gradient flows.
In the rapidly evolving landscape of AI-mediated communication (AIMC), tools powered by Large Language Models (LLMs) are becoming integral to interpersonal communication. Employing a mixed-methods approach, we conducted a one-week diary and interview study to explore users' perceptions of these tools' ability to: 1) support interpersonal communication in the short-term, and 2) lead to potential long-term effects. Our findings indicate that participants view AIMC support favorably, citing benefits such as increased communication confidence, and finding precise language to express their thoughts, navigating linguistic and cultural barriers. However, the study also uncovers current limitations of AIMC tools, including verbosity, unnatural responses, and excessive emotional intensity. These shortcomings are further exacerbated by user concerns about inauthenticity and potential overreliance on the technology. Furthermore, we identified four key communication spaces delineated by communication stakes (high or low) and relationship dynamics (formal or informal) that differentially predict users' attitudes toward AIMC tools. Specifically, participants found the tool is more suitable for communicating in formal relationships than informal ones and more beneficial in high-stakes than low-stakes communication.
Content creators increasingly utilize generative artificial intelligence (Gen-AI) on platforms such as YouTube, TikTok, Instagram, and various blogging sites to produce imaginative images, AI-generated videos, and articles using Large Language Models (LLMs). Despite its growing popularity, there remains an underexplored area concerning the specific domains where AI-generated content is being applied, and the methodologies content creators employ with Gen-AI tools during the creation process. This study initially explores this emerging area through a qualitative analysis of 68 YouTube videos demonstrating Gen-AI usage. Our research focuses on identifying the content domains, the variety of tools used, the activities performed, and the nature of the final products generated by Gen-AI in the context of user-generated content.
In this paper, we propose a class of nonlocal models to approximate the Poisson model on manifolds with homogeneous Neumann boundary condition, where the manifolds are assumed to be embedded in high dimensional Euclid spaces. In comparison to the existing nonlocal approximation of Poisson models with Neumann boundary, we optimize the truncation error of model by adding an augmented term along the $2\delta$ layer of boundary, with $2\delta$ be the nonlocal interaction horizon. Such term is formulated by the integration of the second order normal derivative of solution through the boundary, while the second order normal derivative is expressed as the difference between the interior Laplacian and the boundary Laplacian. The concentration of our paper is on the construction of nonlocal model, the well-posedness of model, and its second-order convergence rate to its local counterpart. The localization rate of our nonlocal model is currently optimal among all related works even for the case of high dimensional Euclid spaces.
While chain-of-thought prompting (CoT) has the potential to improve the explainability of language model reasoning, it can systematically misrepresent the factors influencing models' behavior--for example, rationalizing answers in line with a user's opinion without mentioning this bias. To mitigate this biased reasoning problem, we introduce bias-augmented consistency training (BCT), an unsupervised fine-tuning scheme that trains models to give consistent reasoning across prompts with and without biasing features. We construct a suite testing nine forms of biased reasoning on seven question-answering tasks, and find that applying BCT to GPT-3.5-Turbo with one bias reduces the rate of biased reasoning by 86% on held-out tasks. Moreover, this model generalizes to other forms of bias, reducing biased reasoning on held-out biases by an average of 37%. As BCT generalizes to held-out biases and does not require gold labels, this method may hold promise for reducing biased reasoning from as-of-yet unknown biases and on tasks where supervision for ground truth reasoning is unavailable.
Hyper-redundant Robotic Manipulators (HRMs) offer great dexterity and flexibility of operation, but solving Inverse Kinematics (IK) is challenging. In this work, we introduce VO-FABRIK, an algorithm combining Forward and Backward Reaching Inverse Kinematics (FABRIK) for repeatable deterministic IK computation, and an approach inspired from velocity obstacles to perform path planning under collision and joint limits constraints. We show preliminary results on an industrial HRM with 19 actuated joints. Our algorithm achieves good performance where a state-of-the-art IK solver fails.
We introduce Syntax-Aware Fill-In-the-Middle (SAFIM), a new benchmark for evaluating Large Language Models (LLMs) on the code Fill-in-the-Middle (FIM) task. This benchmark focuses on syntax-aware completions of program structures such as code blocks and conditional expressions, and includes 17,720 examples from multiple programming languages, sourced from recent code submissions after April 2022 to minimize data contamination. SAFIM provides a robust framework with various prompt designs and novel syntax-aware post-processing techniques, facilitating accurate and fair comparisons across LLMs. Our comprehensive evaluation of 15 LLMs shows that FIM pretraining not only enhances FIM proficiency but also improves Left-to-Right (L2R) inference using LLMs. Our findings challenge conventional beliefs and suggest that pretraining methods and data quality have more impact than model size. SAFIM thus serves as a foundational platform for future research in effective pretraining strategies for code LLMs. The evaluation toolkit and dataset are available at //github.com/gonglinyuan/safim, and the leaderboard is available at //safimbenchmark.com.
Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.
Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.