亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we study the smallest non-zero eigenvalue of the sample covariance matrices $\mathcal{S}(Y)=YY^*$, where $Y=(y_{ij})$ is an $M\times N$ matrix with iid mean $0$ variance $N^{-1}$ entries. We prove a phase transition for its distribution, induced by the fatness of the tail of $y_{ij}$'s. More specifically, we assume that $y_{ij}$ is symmetrically distributed with tail probability $\mathbb{P}(|\sqrt{N}y_{ij}|\geq x)\sim x^{-\alpha}$ when $x\to \infty$, for some $\alpha\in (2,4)$. We show the following conclusions: (i). When $\alpha>\frac83$, the smallest eigenvalue follows the Tracy-Widom law on scale $N^{-\frac23}$; (ii). When $2<\alpha<\frac83$, the smallest eigenvalue follows the Gaussian law on scale $N^{-\frac{\alpha}{4}}$; (iii). When $\alpha=\frac83$, the distribution is given by an interpolation between Tracy-Widom and Gaussian; (iv). In case $\alpha\leq \frac{10}{3}$, in addition to the left edge of the MP law, a deterministic shift of order $N^{1-\frac{\alpha}{2}}$ shall be subtracted from the smallest eigenvalue, in both the Tracy-Widom law and the Gaussian law. Overall speaking, our proof strategy is inspired by \cite{ALY} which is originally done for the bulk regime of the L\'{e}vy Wigner matrices. In addition to various technical complications arising from the bulk-to-edge extension, two ingredients are needed for our derivation: an intermediate left edge local law based on a simple but effective matrix minor argument, and a mesoscopic CLT for the linear spectral statistic with asymptotic expansion for its expectation.

相關內容

For a matrix $A$ which satisfies Crouzeix's conjecture, we construct several classes of matrices from $A$ for which the conjecture will also hold. We discover a new link between cyclicity and Crouzeix's conjecture, which shows that Crouzeix's Conjecture holds in full generality if and only if it holds for the differentiation operator on a class of analytic functions. We pose several open questions, which if proved, will prove Crouzeix's conjecture. We also begin an investigation into Crouzeix's conjecture for symmetric matrices and in the case of $3 \times 3$ matrices, we show Crouzeix's conjecture holds for symmetric matrices if and only if it holds for analytic truncated Toeplitz operators.

Let the costs $C(i,j)$ for an instance of the asymmetric traveling salesperson problem be independent uniform $[0,1]$ random variables. We consider the efficiency of branch and bound algorithms that use the assignment relaxation as a lower bound. We show that w.h.p. the number of steps taken in any such branch and bound algorithm is $e^{\Omega(n^a)}$ for some small absolute constant $a>0$.

The Davis-Kahan-Wedin $\sin \Theta$ theorem describes how the singular subspaces of a matrix change when subjected to a small perturbation. This classic result is sharp in the worst case scenario. In this paper, we prove a stochastic version of the Davis-Kahan-Wedin $\sin \Theta$ theorem when the perturbation is a Gaussian random matrix. Under certain structural assumptions, we obtain an optimal bound that significantly improves upon the classic Davis-Kahan-Wedin $\sin \Theta$ theorem. One of our key tools is a new perturbation bound for the singular values, which may be of independent interest.

In this short note, we present a refined approximation for the log-ratio of the density of the von Mises$(\mu,\kappa)$ distribution (also called the circular normal distribution) to the standard (linear) normal distribution when the concentration parameter \k{appa} is large. Our work complements the one of Hill (1976), who obtained a very similar approximation along with quantile couplings, using earlier approximations by Hill & Davis (1968) of Cornish-Fisher type. One motivation for this note is to highlight the connection between the circular and linear normal distributions through their circular variance and (linear) variance.

We incorporate strong negation in the theory of computable functionals TCF, a common extension of Plotkin's PCF and G\"{o}del's system $\mathbf{T}$, by defining simultaneously strong negation $A^{\mathbf{N}}$ of a formula $A$ and strong negation $P^{\mathbf{N}}$ of a predicate $P$ in TCF. As a special case of the latter, we get strong negation of an inductive and a coinductive predicate of TCF. We prove appropriate versions of the Ex falso quodlibet and of double negation elimination for strong negation in TCF. We introduce the so-called tight formulas of TCF i.e., formulas implied from the weak negation of their strong negation, and the relative tight formulas. We present various case-studies and examples, which reveal the naturality of our definition of strong negation in TCF and justify the use of TCF as a formal system for a large part of Bishop-style constructive mathematics.

In this work, we study the convergence and performance of nonlinear solvers for the Bidomain equations after decoupling the ordinary and partial differential equations of the cardiac system. Firstly, we provide a rigorous proof of the global convergence of Quasi-Newton methods, such as BFGS, and nonlinear Conjugate-Gradient methods, such as Fletcher--Reeves, for the Bidomain system, by analyzing an auxiliary variational problem under physically reasonable hypotheses. Secondly, we compare several nonlinear Bidomain solvers in terms of execution time, robustness with respect to the data and parallel scalability. Our findings indicate that Quasi-Newton methods are the best choice for nonlinear Bidomain systems, since they exhibit faster convergence rates compared to standard Newton-Krylov methods, while maintaining robustness and scalability. Furthermore, first-order methods also demonstrate competitiveness and serve as a viable alternative, particularly for matrix-free implementations that are well-suited for GPU computing.

In algebraic geometry, enumerating or finding superspecial curves in positive characteristic $p$ is important both in theory and in computation. In this paper, we propose feasible algorithms to enumerate or find superspecial hyperelliptic curves of genus $4$ with automorphism group properly containing the Klein $4$-group. Executing the algorithms on Magma, we succeeded in enumerating such superspecial curves for every $p$ with $19 \leq p < 500$, and in finding a single one for every $p$ with $19 \leq p < 7000$.

In this paper we investigate the finite sum of cosecants $\sum\csc\big(\varphi+a\pi l/n\big),$ where the index $l$ runs through 1 to $n-1$ and $\varphi$ and $a$ are arbitrary parameters, as well as several closely related sums, such as similar sums of a series of secants, of tangents and of cotangents. These trigonometric sums appear in various problems in mathematics, physics, and a variety of related disciplines. Their particular cases were fragmentarily considered in previous works, and it was noted that even a simple particular case $\sum\csc\big(\pi l/n\big)$ does not have a closed-form, i.e.~a compact summation formula. In the paper, we derive several alternative representations for the above-mentioned sums, study their properties, relate them to many other finite and infinite sums, obtain their complete asymptotic expansions for large $n$ and provide accurate upper and lower bounds (e.g. the typical relative error for the upper bound is lesser than $2\times10^{-9}$ for $n\geqslant10$ and lesser than $7\times10^{-14}$ for $n\geqslant50$, which is much better than the bounds we could find in previous works). Our researches reveal that these sums are deeply related to several special numbers and functions, especially to the digamma function (furthermore, as a by-product, we obtain several interesting summations formulae for the digamma function). Asymptotical studies show that these sums may have qualitatively different behaviour depending on the choice of $\varphi$ and $a$; in particular, as $n$ increases some of them may become sporadically large. Finally, we also provide several historical remarks related to various sums considered in the paper. We show that some results in the field either were rediscovered several times or can easily be deduced from various known formulae, including some formulae dating back to the XIIXth century.

We consider the classical \emph{spherical} perceptrons and study their capacities. The famous zero-threshold case was solved in the sixties of the last century (see, \cite{Wendel62,Winder,Cover65}) through the high-dimensional combinatorial considerations. The general threshold, $\kappa$, case though turned out to be much harder and stayed out of reach for the following several decades. A substantial progress was then made in \cite{SchTir02} and \cite{StojnicGardGen13} where the \emph{positive} threshold ($\kappa\geq 0$) scenario was finally fully settled. While the negative counterpart ($\kappa\leq 0$) remained out of reach, \cite{StojnicGardGen13} did show that the random duality theory (RDT) is still powerful enough to provide excellent upper bounds. Moreover, in \cite{StojnicGardSphNeg13}, a \emph{partially lifted} RDT variant was considered and it was shown that the upper bounds of \cite{StojnicGardGen13} can be lowered. After recent breakthroughs in studying bilinearly indexed (bli) random processes in \cite{Stojnicsflgscompyx23,Stojnicnflgscompyx23}, \emph{fully lifted} random duality theory (fl RDT) was developed in \cite{Stojnicflrdt23}. We here first show that the \emph{negative spherical perceptrons} can be fitted into the frame of the fl RDT and then employ the whole fl RDT machinery to characterize the capacity. To be fully practically operational, the fl RDT requires a substantial numerical work. We, however, uncover remarkable closed form analytical relations among key lifting parameters. Such a discovery enables performing the needed numerical calculations to obtain concrete capacity values. We also observe that an excellent convergence (with the relative improvement $\sim 0.1\%$) is achieved already on the third (second non-trivial) level of the \emph{stationarized} full lifting.

Numerical solving the Schr\"odinger equation with incommensurate potentials presents a great challenge since its solutions could be space-filling quasiperiodic structures without translational symmetry nor decay. In this paper, we propose two high-accuracy numerical methods to solve the time-dependent quasiperiodic Schr\"odinger equation. Concretely, we discretize the spatial variables by the quasiperiodic spectral method and the projection method, and the time variable by the second-order operator splitting method. The corresponding convergence analysis is also presented and shows that the proposed methods both have exponential convergence rate in space and second order accuracy in time, respectively. Meanwhile, we analyse the computational complexity of these numerical algorithms. One- and two-dimensional numerical results verify these convergence conclusions, and demonstrate that the projection method is more efficient.

北京阿比特科技有限公司