亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper we investigate the finite sum of cosecants $\sum\csc\big(\varphi+a\pi l/n\big),$ where the index $l$ runs through 1 to $n-1$ and $\varphi$ and $a$ are arbitrary parameters, as well as several closely related sums, such as similar sums of a series of secants, of tangents and of cotangents. These trigonometric sums appear in various problems in mathematics, physics, and a variety of related disciplines. Their particular cases were fragmentarily considered in previous works, and it was noted that even a simple particular case $\sum\csc\big(\pi l/n\big)$ does not have a closed-form, i.e.~a compact summation formula. In the paper, we derive several alternative representations for the above-mentioned sums, study their properties, relate them to many other finite and infinite sums, obtain their complete asymptotic expansions for large $n$ and provide accurate upper and lower bounds (e.g. the typical relative error for the upper bound is lesser than $2\times10^{-9}$ for $n\geqslant10$ and lesser than $7\times10^{-14}$ for $n\geqslant50$, which is much better than the bounds we could find in previous works). Our researches reveal that these sums are deeply related to several special numbers and functions, especially to the digamma function (furthermore, as a by-product, we obtain several interesting summations formulae for the digamma function). Asymptotical studies show that these sums may have qualitatively different behaviour depending on the choice of $\varphi$ and $a$; in particular, as $n$ increases some of them may become sporadically large. Finally, we also provide several historical remarks related to various sums considered in the paper. We show that some results in the field either were rediscovered several times or can easily be deduced from various known formulae, including some formulae dating back to the XIIXth century.

相關內容

Improving a 2003 result of Bohman and Holzman, we show that for $n \geq 1$, the Shannon capacity of the complement of the $2n+1$-cycle is at least $(2^{r_n} + 1)^{1/r_n} = 2 + \Omega(2^{-r_n}/r_n)$, where $r_n = \exp(O((\log n)^2))$ is the number of partitions of $2(n-1)$ into powers of $2$.

In this paper, we aim to perform sensitivity analysis of set-valued models and, in particular, to quantify the impact of uncertain inputs on feasible sets, which are key elements in solving a robust optimization problem under constraints. While most sensitivity analysis methods deal with scalar outputs, this paper introduces a novel approach for performing sensitivity analysis with set-valued outputs. Our innovative methodology is designed for excursion sets, but is versatile enough to be applied to set-valued simulators, including those found in viability fields, or when working with maps like pollutant concentration maps or flood zone maps. We propose to use the Hilbert-Schmidt Independence Criterion (HSIC) with a kernel designed for set-valued outputs. After proposing a probabilistic framework for random sets, a first contribution is the proof that this kernel is characteristic, an essential property in a kernel-based sensitivity analysis context. To measure the contribution of each input, we then propose to use HSIC-ANOVA indices. With these indices, we can identify which inputs should be neglected (screening) and we can rank the others according to their influence (ranking). The estimation of these indices is also adapted to the set-valued outputs. Finally, we test the proposed method on three test cases of excursion sets.

We analyze a Discontinuous Galerkin method for a problem with linear advection-reaction and $p$-type diffusion, with Sobolev indices $p\in (1, \infty)$. The discretization of the diffusion term is based on the full gradient including jump liftings and interior-penalty stabilization while, for the advective contribution, we consider a strengthened version of the classical upwind scheme. The developed error estimates track the dependence of the local contributions to the error on local P\'eclet numbers. A set of numerical tests supports the theoretical derivations.

In this paper we show that every graph $G$ of bounded maximum average degree ${\rm mad}(G)$ and with maximum degree $\Delta$ can be edge-colored using the optimal number of $\Delta$ colors in quasilinear expected time, whenever $\Delta\ge 2{\rm mad}(G)$. The maximum average degree is within a multiplicative constant of other popular graph sparsity parameters like arboricity, degeneracy or maximum density. Our algorithm extends previous results of Chrobak and Nishizeki [J. Algorithms, 1990] and Bhattacharya, Costa, Panski and Solomon [arXiv, 2023].

The classical Heawood inequality states that if the complete graph $K_n$ on $n$ vertices is embeddable in the sphere with $g$ handles, then $g \ge\dfrac{(n-3)(n-4)}{12}$. A higher-dimensional analogue of the Heawood inequality is the K\"uhnel conjecture. In a simplified form it states that for every integer $k>0$ there is $c_k>0$ such that if the union of $k$-faces of $n$-simplex embeds into the connected sum of $g$ copies of the Cartesian product $S^k\times S^k$ of two $k$-dimensional spheres, then $g\ge c_k n^{k+1}$. For $k>1$ only linear estimates were known. We present a quadratic estimate $g\ge c_k n^2$. The proof is based on beautiful and fruitful interplay between geometric topology, combinatorics and linear algebra.

This paper addresses structured normwise, mixed, and componentwise condition numbers (CNs) for a linear function of the solution to the generalized saddle point problem (GSPP). We present a general framework enabling us to measure the structured CNs of the individual solution components and derive their explicit formulae when the input matrices have symmetric, Toeplitz, or some general linear structures. In addition, compact formulae for the unstructured CNs are obtained, which recover previous results on CNs for GSPPs for specific choices of the linear function. Furthermore, an application of the derived structured CNs is provided to determine the structured CNs for the weighted Teoplitz regularized least-squares problems and Tikhonov regularization problems, which retrieves some previous studies in the literature.

Often the question arises whether $Y$ can be predicted based on $X$ using a certain model. Especially for highly flexible models such as neural networks one may ask whether a seemingly good prediction is actually better than fitting pure noise or whether it has to be attributed to the flexibility of the model. This paper proposes a rigorous permutation test to assess whether the prediction is better than the prediction of pure noise. The test avoids any sample splitting and is based instead on generating new pairings of $(X_i, Y_j)$. It introduces a new formulation of the null hypothesis and rigorous justification for the test, which distinguishes it from previous literature. The theoretical findings are applied both to simulated data and to sensor data of tennis serves in an experimental context. The simulation study underscores how the available information affects the test. It shows that the less informative the predictors, the lower the probability of rejecting the null hypothesis of fitting pure noise and emphasizes that detecting weaker dependence between variables requires a sufficient sample size.

We investigate a linearised Calder\'on problem in a two-dimensional bounded simply connected $C^{1,\alpha}$ domain $\Omega$. After extending the linearised problem for $L^2(\Omega)$ perturbations, we orthogonally decompose $L^2(\Omega) = \oplus_{k=0}^\infty \mathcal{H}_k$ and prove Lipschitz stability on each of the infinite-dimensional $\mathcal{H}_k$ subspaces. In particular, $\mathcal{H}_0$ is the space of square-integrable harmonic perturbations. This appears to be the first Lipschitz stability result for infinite-dimensional spaces of perturbations in the context of the (linearised) Calder\'on problem. Previous optimal estimates with respect to the operator norm of the data map have been of the logarithmic-type in infinite-dimensional settings. The remarkable improvement is enabled by using the Hilbert-Schmidt norm for the Neumann-to-Dirichlet boundary map and its Fr\'echet derivative with respect to the conductivity coefficient. We also derive a direct reconstruction method that inductively yields the orthogonal projections of a general $L^2(\Omega)$ perturbation onto the $\mathcal{H}_k$ spaces, hence reconstructing any $L^2(\Omega)$ perturbation.

In this paper, we use the Bayesian inversion approach to study the data assimilation problem for a family of tumor growth models described by porous-medium type equations. The models contain uncertain parameters and are indexed by a physical parameter $m$, which characterizes the constitutive relation between density and pressure. Based on these models, we employ the Bayesian inversion framework to infer parametric and nonparametric unknowns that affect tumor growth from noisy observations of tumor cell density. We establish the well-posedness and the stability theories for the Bayesian inversion problem and further prove the convergence of the posterior distribution in the so-called incompressible limit, $m \rightarrow \infty$. Since the posterior distribution across the index regime $m\in[2,\infty)$ can thus be treated in a unified manner, such theoretical results also guide the design of the numerical inference for the unknown. We propose a generic computational framework for such inverse problems, which consists of a typical sampling algorithm and an asymptotic preserving solver for the forward problem. With extensive numerical tests, we demonstrate that the proposed method achieves satisfactory accuracy in the Bayesian inference of the tumor growth models, which is uniform with respect to the constitutive relation.

We construct an estimator $\widehat{\Sigma}$ for covariance matrices of unknown, centred random vectors X, with the given data consisting of N independent measurements $X_1,...,X_N$ of X and the wanted confidence level. We show under minimal assumptions on X, the estimator performs with the optimal accuracy with respect to the operator norm. In addition, the estimator is also optimal with respect to direction dependence accuracy: $\langle \widehat{\Sigma}u,u\rangle$ is an optimal estimator for $\sigma^2(u)=\mathbb{E}\langle X,u\rangle^2$ when $\sigma^2(u)$ is ``large".

北京阿比特科技有限公司