亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Recent years have seen a dramatic increase in the microarchitectural complexity of processors. This increase in complexity presents a twofold challenge for the field of computer architecture. First, no individual architect can fully comprehend the complexity of the entire microarchitecture of the core. This leads to increasingly specialized architects, who treat parts of the core outside their particular expertise as black boxes. Second, with increasing complexity, the field becomes decreasingly accessible to new students of the field. When learning core microarchitecture, new students must first learn the big picture of how the system works in order to understand how the pieces all fit together. The tools used to study microarchitecture experience a similar struggle. As with the microarchitectures they simulate, an increase in complexity reduces accessibility to new users. In this work, we present ChampSim. ChampSim uses a modular design and configurable structure to achieve a low barrier to entry into the field of microarchitecural simulation. ChampSim has shown itself to be useful in multiple areas of research, competition, and education. In this way, we seek to promote access and inclusion despite the increasing complexity of the field of computer architecture.

相關內容

The automated machine learning (AutoML) field has become increasingly relevant in recent years. These algorithms can develop models without the need for expert knowledge, facilitating the application of machine learning techniques in the industry. Neural Architecture Search (NAS) exploits deep learning techniques to autonomously produce neural network architectures whose results rival the state-of-the-art models hand-crafted by AI experts. However, this approach requires significant computational resources and hardware investments, making it less appealing for real-usage applications. This article presents the third version of Pareto-Optimal Progressive Neural Architecture Search (POPNASv3), a new sequential model-based optimization NAS algorithm targeting different hardware environments and multiple classification tasks. Our method is able to find competitive architectures within large search spaces, while keeping a flexible structure and data processing pipeline to adapt to different tasks. The algorithm employs Pareto optimality to reduce the number of architectures sampled during the search, drastically improving the time efficiency without loss in accuracy. The experiments performed on images and time series classification datasets provide evidence that POPNASv3 can explore a large set of assorted operators and converge to optimal architectures suited for the type of data provided under different scenarios.

Neural Architecture Search (NAS) for automatically finding the optimal network architecture has shown some success with competitive performances in various computer vision tasks. However, NAS in general requires a tremendous amount of computations. Thus reducing computational cost has emerged as an important issue. Most of the attempts so far has been based on manual approaches, and often the architectures developed from such efforts dwell in the balance of the network optimality and the search cost. Additionally, recent NAS methods for image restoration generally do not consider dynamic operations that may transform dimensions of feature maps because of the dimensionality mismatch in tensor calculations. This can greatly limit NAS in its search for optimal network structure. To address these issues, we re-frame the optimal search problem by focusing at component block level. From previous work, it's been shown that an effective denoising block can be connected in series to further improve the network performance. By focusing at block level, the search space of reinforcement learning becomes significantly smaller and evaluation process can be conducted more rapidly. In addition, we integrate an innovative dimension matching modules for dealing with spatial and channel-wise mismatch that may occur in the optimal design search. This allows much flexibility in optimal network search within the cell block. With these modules, then we employ reinforcement learning in search of an optimal image denoising network at a module level. Computational efficiency of our proposed Denoising Prior Neural Architecture Search (DPNAS) was demonstrated by having it complete an optimal architecture search for an image restoration task by just one day with a single GPU.

Video enhancement is a challenging problem, more than that of stills, mainly due to high computational cost, larger data volumes and the difficulty of achieving consistency in the spatio-temporal domain. In practice, these challenges are often coupled with the lack of example pairs, which inhibits the application of supervised learning strategies. To address these challenges, we propose an efficient adversarial video enhancement framework that learns directly from unpaired video examples. In particular, our framework introduces new recurrent cells that consist of interleaved local and global modules for implicit integration of spatial and temporal information. The proposed design allows our recurrent cells to efficiently propagate spatio-temporal information across frames and reduces the need for high complexity networks. Our setting enables learning from unpaired videos in a cyclic adversarial manner, where the proposed recurrent units are employed in all architectures. Efficient training is accomplished by introducing one single discriminator that learns the joint distribution of source and target domain simultaneously. The enhancement results demonstrate clear superiority of the proposed video enhancer over the state-of-the-art methods, in all terms of visual quality, quantitative metrics, and inference speed. Notably, our video enhancer is capable of enhancing over 35 frames per second of FullHD video (1080x1920).

The U.S. Child Welfare System (CWS) is increasingly seeking to emulate business models of the private sector centered in efficiency, cost reduction, and innovation through the adoption of algorithms. These data-driven systems purportedly improve decision-making, however, the public sector poses its own set of challenges with respect to the technical, theoretical, cultural, and societal implications of algorithmic decision-making. To fill these gaps, my dissertation comprises four studies that examine: 1) how caseworkers interact with algorithms in their day-to-day discretionary work, 2) the impact of algorithmic decision-making on the nature of practice, organization, and street-level decision-making, 3) how casenotes can help unpack patterns of invisible labor and contextualize decision-making processes, and 4) how casenotes can help uncover deeper systemic constraints and risk factors that are hard to quantify but directly impact families and street-level decision-making. My goal for this research is to investigate systemic disparities and design and develop algorithmic systems that are centered in the theory of practice and improve the quality of human discretionary work. These studies have provided actionable steps for human-centered algorithm design in the public sector.

Ransomware has emerged as one of the major global threats in recent days. The alarming increasing rate of ransomware attacks and new ransomware variants intrigue the researchers in this domain to constantly examine the distinguishing traits of ransomware and refine their detection or classification strategies. Among the broad range of different behavioral characteristics, the trait of Application Programming Interface (API) calls and network behaviors have been widely utilized as differentiating factors for ransomware detection, or classification. Although many of the prior approaches have shown promising results in detecting and classifying ransomware families utilizing these features without applying any feature selection techniques, feature selection, however, is one of the potential steps toward an efficient detection or classification Machine Learning model because it reduces the probability of overfitting by removing redundant data, improves the model's accuracy by eliminating irrelevant features, and therefore reduces training time. There have been a good number of feature selection techniques to date that are being used in different security scenarios to optimize the performance of the Machine Learning models. Hence, the aim of this study is to present the comparative performance analysis of widely utilized Supervised Machine Learning models with and without RFECV feature selection technique towards ransomware classification utilizing the API call and network traffic features. Thereby, this study provides insight into the efficiency of the RFECV feature selection technique in the case of ransomware classification which can be used by peers as a reference for future work in choosing the feature selection technique in this domain.

Few-shot learning (FSL) has emerged as an effective learning method and shows great potential. Despite the recent creative works in tackling FSL tasks, learning valid information rapidly from just a few or even zero samples still remains a serious challenge. In this context, we extensively investigated 200+ latest papers on FSL published in the past three years, aiming to present a timely and comprehensive overview of the most recent advances in FSL along with impartial comparisons of the strengths and weaknesses of the existing works. For the sake of avoiding conceptual confusion, we first elaborate and compare a set of similar concepts including few-shot learning, transfer learning, and meta-learning. Furthermore, we propose a novel taxonomy to classify the existing work according to the level of abstraction of knowledge in accordance with the challenges of FSL. To enrich this survey, in each subsection we provide in-depth analysis and insightful discussion about recent advances on these topics. Moreover, taking computer vision as an example, we highlight the important application of FSL, covering various research hotspots. Finally, we conclude the survey with unique insights into the technology evolution trends together with potential future research opportunities in the hope of providing guidance to follow-up research.

Deep neural networks (DNNs) have achieved unprecedented success in the field of artificial intelligence (AI), including computer vision, natural language processing and speech recognition. However, their superior performance comes at the considerable cost of computational complexity, which greatly hinders their applications in many resource-constrained devices, such as mobile phones and Internet of Things (IoT) devices. Therefore, methods and techniques that are able to lift the efficiency bottleneck while preserving the high accuracy of DNNs are in great demand in order to enable numerous edge AI applications. This paper provides an overview of efficient deep learning methods, systems and applications. We start from introducing popular model compression methods, including pruning, factorization, quantization as well as compact model design. To reduce the large design cost of these manual solutions, we discuss the AutoML framework for each of them, such as neural architecture search (NAS) and automated pruning and quantization. We then cover efficient on-device training to enable user customization based on the local data on mobile devices. Apart from general acceleration techniques, we also showcase several task-specific accelerations for point cloud, video and natural language processing by exploiting their spatial sparsity and temporal/token redundancy. Finally, to support all these algorithmic advancements, we introduce the efficient deep learning system design from both software and hardware perspectives.

Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.

The prevalence of networked sensors and actuators in many real-world systems such as smart buildings, factories, power plants, and data centers generate substantial amounts of multivariate time series data for these systems. The rich sensor data can be continuously monitored for intrusion events through anomaly detection. However, conventional threshold-based anomaly detection methods are inadequate due to the dynamic complexities of these systems, while supervised machine learning methods are unable to exploit the large amounts of data due to the lack of labeled data. On the other hand, current unsupervised machine learning approaches have not fully exploited the spatial-temporal correlation and other dependencies amongst the multiple variables (sensors/actuators) in the system for detecting anomalies. In this work, we propose an unsupervised multivariate anomaly detection method based on Generative Adversarial Networks (GANs). Instead of treating each data stream independently, our proposed MAD-GAN framework considers the entire variable set concurrently to capture the latent interactions amongst the variables. We also fully exploit both the generator and discriminator produced by the GAN, using a novel anomaly score called DR-score to detect anomalies by discrimination and reconstruction. We have tested our proposed MAD-GAN using two recent datasets collected from real-world CPS: the Secure Water Treatment (SWaT) and the Water Distribution (WADI) datasets. Our experimental results showed that the proposed MAD-GAN is effective in reporting anomalies caused by various cyber-intrusions compared in these complex real-world systems.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司