亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

When studying political communication, combining the information from text, audio, and video signals promises to reflect the richness of human communication more comprehensively than confining it to individual modalities alone. However, when modeling such multimodal data, its heterogeneity, connectedness, and interaction are challenging to address. We argue that aligning the respective modalities can be an essential step in entirely using the potential of multimodal data because it informs the model with human understanding. Exploring aligned modalities unlocks promising analytical leverage. First, it allows us to make the most of information in the data, which inter alia opens the door to better quality predictions. Second, it is possible to answer research questions that span multiple modalities with cross-modal queries. Finally, alignment addresses concerns about model interpretability. We illustrate the utility of this approach by analyzing how German MPs address members of the far-right AfD in their speeches, and predicting the tone of video advertising in the context of the 2020 US presidential race. Our paper offers important insights to all keen to analyze multimodal data effectively.

相關內容

We propose a unifying framework for smoothed analysis of combinatorial local optimization problems, and show how a diverse selection of problems within the complexity class PLS can be cast within this model. This abstraction allows us to identify key structural properties, and corresponding parameters, that determine the smoothed running time of local search dynamics. We formalize this via a black-box tool that provides concrete bounds on the expected maximum number of steps needed until local search reaches an exact local optimum. This bound is particularly strong, in the sense that it holds for any starting feasible solution, any choice of pivoting rule, and does not rely on the choice of specific noise distributions that are applied on the input, but it is parameterized by just a global upper bound $\phi$ on the probability density. The power of this tool can be demonstrated by instantiating it for various PLS-hard problems of interest to derive efficient smoothed running times (as a function of $\phi$ and the input size). Most notably, we focus on the important local optimization problem of finding pure Nash equilibria in Congestion Games, that has not been studied before from a smoothed analysis perspective. Specifically, we propose novel smoothed analysis models for general and Network Congestion Games, under various representations, including explicit, step-function, and polynomial resource latencies. We study PLS-hard instances of these problems and show that their standard local search algorithms run in polynomial smoothed time. Finally, we present further applications of our framework to a wide range of additional combinatorial problems, including local Max-Cut in weighted graphs, the Travelling Salesman problem (TSP) under the $k$-opt local heuristic, and finding pure equilibria in Network Coordination Games.

We introduce a simulation environment to facilitate research into emergent collective behaviour, with a focus on replicating the dynamics of ant colonies. By leveraging real-world data, the environment simulates a target ant trail that a controllable agent must learn to replicate, using sensory data observed by the target ant. This work aims to contribute to the neuroevolution of models for collective behaviour, focusing on evolving neural architectures that encode domain-specific behaviours in the network topology. By evolving models that can be modified and studied in a controlled environment, we can uncover the necessary conditions required for collective behaviours to emerge. We hope this environment will be useful to those studying the role of interactions in emergent behaviour within collective systems.

The recent successes and spread of large neural language models (LMs) call for a thorough understanding of their computational ability. Describing their computational abilities through LMs' \emph{representational capacity} is a lively area of research. However, investigation into the representational capacity of neural LMs has predominantly focused on their ability to \emph{recognize} formal languages. For example, recurrent neural networks (RNNs) with Heaviside activations are tightly linked to regular languages, i.e., languages defined by finite-state automata (FSAs). Such results, however, fall short of describing the capabilities of RNN \emph{language models} (LMs), which are definitionally \emph{distributions} over strings. We take a fresh look at the representational capacity of RNN LMs by connecting them to \emph{probabilistic} FSAs and demonstrate that RNN LMs with linearly bounded precision can express arbitrary regular LMs.

In the field of crowd counting research, many recent deep learning based methods have demonstrated robust capabilities for accurately estimating crowd sizes. However, the enhancement in their performance often arises from an increase in the complexity of the model structure. This paper discusses how to construct high-performance crowd counting models using only simple structures. We proposes the Fuss-Free Network (FFNet) that is characterized by its simple and efficieny structure, consisting of only a backbone network and a multi-scale feature fusion structure. The multi-scale feature fusion structure is a simple structure consisting of three branches, each only equipped with a focus transition module, and combines the features from these branches through the concatenation operation. Our proposed crowd counting model is trained and evaluated on four widely used public datasets, and it achieves accuracy that is comparable to that of existing complex models. Furthermore, we conduct a comprehensive evaluation by replacing the existing backbones of various models such as FFNet and CCTrans with different networks, including MobileNet-v3, ConvNeXt-Tiny, and Swin-Transformer-Small. The experimental results further indicate that excellent crowd counting performance can be achieved with the simplied structure proposed by us.

We study the problem of capacity modification in the many-to-one stable matching of workers and firms. Our goal is to systematically study how the set of stable matchings changes when some seats are added to or removed from the firms. We make three main contributions: First, we examine whether firms and workers can improve or worsen upon changing the capacities under worker-proposing and firm-proposing deferred acceptance algorithms. Second, we study the computational problem of adding or removing seats to either match a fixed worker-firm pair in some stable matching or make a fixed matching stable with respect to the modified problem. We develop polynomial-time algorithms for these problems when only the overall change in the firms' capacities is restricted, and show NP-hardness when there are additional constraints for individual firms. Lastly, we compare capacity modification with the classical model of preference manipulation by firms and identify scenarios under which one mode of manipulation outperforms the other. We find that a threshold on a given firm's capacity, which we call its peak, crucially determines the effectiveness of different manipulation actions.

Recently, transductive learning methods, which leverage holdout sets during training, have gained popularity for their potential to improve speed, accuracy, and fairness in machine learning models. Despite this, the composition of the holdout set itself, particularly the balance of sensitive sub-groups, has been largely overlooked. Our experiments on CIFAR and CelebA datasets show that compositional changes in the holdout set can substantially influence fairness metrics. Imbalanced holdout sets exacerbate existing disparities, while balanced holdouts can mitigate issues introduced by imbalanced training data. These findings underline the necessity of constructing holdout sets that are both diverse and representative.

Socio-demographic prompting is a commonly employed approach to study cultural biases in LLMs as well as for aligning models to certain cultures. In this paper, we systematically probe four LLMs (Llama 3, Mistral v0.2, GPT-3.5 Turbo and GPT-4) with prompts that are conditioned on culturally sensitive and non-sensitive cues, on datasets that are supposed to be culturally sensitive (EtiCor and CALI) or neutral (MMLU and ETHICS). We observe that all models except GPT-4 show significant variations in their responses on both kinds of datasets for both kinds of prompts, casting doubt on the robustness of the culturally-conditioned prompting as a method for eliciting cultural bias in models or as an alignment strategy. The work also calls rethinking the control experiment design to tease apart the cultural conditioning of responses from "placebo effect", i.e., random perturbations of model responses due to arbitrary tokens in the prompt.

Intelligent transportation systems play a crucial role in modern traffic management and optimization, greatly improving traffic efficiency and safety. With the rapid development of generative artificial intelligence (Generative AI) technologies in the fields of image generation and natural language processing, generative AI has also played a crucial role in addressing key issues in intelligent transportation systems, such as data sparsity, difficulty in observing abnormal scenarios, and in modeling data uncertainty. In this review, we systematically investigate the relevant literature on generative AI techniques in addressing key issues in different types of tasks in intelligent transportation systems. First, we introduce the principles of different generative AI techniques, and their potential applications. Then, we classify tasks in intelligent transportation systems into four types: traffic perception, traffic prediction, traffic simulation, and traffic decision-making. We systematically illustrate how generative AI techniques addresses key issues in these four different types of tasks. Finally, we summarize the challenges faced in applying generative AI to intelligent transportation systems, and discuss future research directions based on different application scenarios.

Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.

We propose a novel approach to multimodal sentiment analysis using deep neural networks combining visual analysis and natural language processing. Our goal is different than the standard sentiment analysis goal of predicting whether a sentence expresses positive or negative sentiment; instead, we aim to infer the latent emotional state of the user. Thus, we focus on predicting the emotion word tags attached by users to their Tumblr posts, treating these as "self-reported emotions." We demonstrate that our multimodal model combining both text and image features outperforms separate models based solely on either images or text. Our model's results are interpretable, automatically yielding sensible word lists associated with emotions. We explore the structure of emotions implied by our model and compare it to what has been posited in the psychology literature, and validate our model on a set of images that have been used in psychology studies. Finally, our work also provides a useful tool for the growing academic study of images - both photographs and memes - on social networks.

北京阿比特科技有限公司