亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Deep neural networks suffer from the catastrophic forgetting problem in the field of continual learning (CL). To address this challenge, we propose MGSER-SAM, a novel memory replay-based algorithm specifically engineered to enhance the generalization capabilities of CL models. We first intergrate the SAM optimizer, a component designed for optimizing flatness, which seamlessly fits into well-known Experience Replay frameworks such as ER and DER++. Then, MGSER-SAM distinctively addresses the complex challenge of reconciling conflicts in weight perturbation directions between ongoing tasks and previously stored memories, which is underexplored in the SAM optimizer. This is effectively accomplished by the strategic integration of soft logits and the alignment of memory gradient directions, where the regularization terms facilitate the concurrent minimization of various training loss terms integral to the CL process. Through rigorous experimental analysis conducted across multiple benchmarks, MGSER-SAM has demonstrated a consistent ability to outperform existing baselines in all three CL scenarios. Comparing to the representative memory replay-based baselines ER and DER++, MGSER-SAM not only improves the testing accuracy by $24.4\%$ and $17.6\%$ respectively, but also achieves the lowest forgetting on each benchmark.

相關內容

An open challenge in reinforcement learning (RL) is the effective deployment of a trained policy to new or slightly different situations as well as semantically-similar environments. We introduce Symmetry-Invariant Transformer (SiT), a scalable vision transformer (ViT) that leverages both local and global data patterns in a self-supervised manner to improve generalisation. Central to our approach is Graph Symmetric Attention, which refines the traditional self-attention mechanism to preserve graph symmetries, resulting in invariant and equivariant latent representations. We showcase SiT's superior generalization over ViTs on MiniGrid and Procgen RL benchmarks, and its sample efficiency on Atari 100k and CIFAR10.

We devise a control-theoretic reinforcement learning approach to support direct learning of the optimal policy. We establish theoretical properties of our approach and derive an algorithm based on a specific instance of this approach. Our empirical results demonstrate the significant benefits of our approach.

Reinforcement learning (RL) is a powerful approach to enhance task-oriented dialogue (TOD) systems. However, existing RL methods tend to mainly focus on generation tasks, such as dialogue policy learning (DPL) or response generation (RG), while neglecting dialogue state tracking (DST) for understanding. This narrow focus limits the systems to achieve globally optimal performance by overlooking the interdependence between understanding and generation. Additionally, RL methods face challenges with sparse and delayed rewards, which complicates training and optimization. To address these issues, we extend RL into both understanding and generation tasks by introducing step-by-step rewards throughout the token generation. The understanding reward increases as more slots are correctly filled in DST, while the generation reward grows with the accurate inclusion of user requests. Our approach provides a balanced optimization aligned with task completion. Experimental results demonstrate that our approach effectively enhances the performance of TOD systems and achieves new state-of-the-art results on three widely used datasets, including MultiWOZ2.0, MultiWOZ2.1, and In-Car. Our approach also shows superior few-shot ability in low-resource settings compared to current models.

Reinforcement learning (RL) has emerged as a promising paradigm in complex and continuous robotic tasks, however, safe exploration has been one of the main challenges, especially in contact-rich manipulation tasks in unstructured environments. Focusing on this issue, we propose SRL-VIC: a model-free safe RL framework combined with a variable impedance controller (VIC). Specifically, safety critic and recovery policy networks are pre-trained where safety critic evaluates the safety of the next action using a risk value before it is executed and the recovery policy suggests a corrective action if the risk value is high. Furthermore, the policies are updated online where the task policy not only achieves the task but also modulates the stiffness parameters to keep a safe and compliant profile. A set of experiments in contact-rich maze tasks demonstrate that our framework outperforms the baselines (without the recovery mechanism and without the VIC), yielding a good trade-off between efficient task accomplishment and safety guarantee. We show our policy trained on simulation can be deployed on a physical robot without fine-tuning, achieving successful task completion with robustness and generalization. The video is available at //youtu.be/ksWXR3vByoQ.

Graph Neural Networks (GNNs) have become pivotal tools for a range of graph-based learning tasks. Notably, most current GNN architectures operate under the assumption of homophily, whether explicitly or implicitly. While this underlying assumption is frequently adopted, it is not universally applicable, which can result in potential shortcomings in learning effectiveness. In this paper, \textbf{for the first time}, we transfer the prevailing concept of ``one node one receptive field" to the heterophilic graph. By constructing a proxy label predictor, we enable each node to possess a latent prediction distribution, which assists connected nodes in determining whether they should aggregate their associated neighbors. Ultimately, every node can have its own unique aggregation hop and pattern, much like each snowflake is unique and possesses its own characteristics. Based on observations, we innovatively introduce the Heterophily Snowflake Hypothesis and provide an effective solution to guide and facilitate research on heterophilic graphs and beyond. We conduct comprehensive experiments including (1) main results on 10 graphs with varying heterophily ratios across 10 backbones; (2) scalability on various deep GNN backbones (SGC, JKNet, etc.) across various large number of layers (2,4,6,8,16,32 layers); (3) comparison with conventional snowflake hypothesis; (4) efficiency comparison with existing graph pruning algorithms. Our observations show that our framework acts as a versatile operator for diverse tasks. It can be integrated into various GNN frameworks, boosting performance in-depth and offering an explainable approach to choosing the optimal network depth. The source code is available at \url{//github.com/bingreeky/HeteroSnoH}.

Graph Neural Networks (GNNs) have emerged as powerful representation learning tools for capturing complex dependencies within diverse graph-structured data. Despite their success in a wide range of graph mining tasks, GNNs have raised serious concerns regarding their trustworthiness, including susceptibility to distribution shift, biases towards certain populations, and lack of explainability. Recently, integrating causal learning techniques into GNNs has sparked numerous ground-breaking studies since many GNN trustworthiness issues can be alleviated by capturing the underlying data causality rather than superficial correlations. In this survey, we comprehensively review recent research efforts on Causality-Inspired GNNs (CIGNNs). Specifically, we first employ causal tools to analyze the primary trustworthiness risks of existing GNNs, underscoring the necessity for GNNs to comprehend the causal mechanisms within graph data. Moreover, we introduce a taxonomy of CIGNNs based on the type of causal learning capability they are equipped with, i.e., causal reasoning and causal representation learning. Besides, we systematically introduce typical methods within each category and discuss how they mitigate trustworthiness risks. Finally, we summarize useful resources and discuss several future directions, hoping to shed light on new research opportunities in this emerging field. The representative papers, along with open-source data and codes, are available in //github.com/usail-hkust/Causality-Inspired-GNNs.

Ontologies provide formal representation of knowledge shared within Semantic Web applications. Ontology learning involves the construction of ontologies from a given corpus. In the past years, ontology learning has traversed through shallow learning and deep learning methodologies, each offering distinct advantages and limitations in the quest for knowledge extraction and representation. A new trend of these approaches is relying on large language models (LLMs) to enhance ontology learning. This paper gives a review in approaches and challenges of ontology learning. It analyzes the methodologies and limitations of shallow-learning-based and deep-learning-based techniques for ontology learning, and provides comprehensive knowledge for the frontier work of using LLMs to enhance ontology learning. In addition, it proposes several noteworthy future directions for further exploration into the integration of LLMs with ontology learning tasks.

Recent studies have revealed that using social robots can accelerate the learning process of several skills in areas where autistic children typically show deficits. However, most early research studies conducted interactions via free play. More recent research has demonstrated that robot-mediated autism therapies focusing on core impairments of autism spectrum disorder (e.g., joint attention) yield better results than unstructured interactions. This paper aims to systematically review the most relevant findings concerning the application of social robotics to joint attention tasks, a cardinal feature of autism spectrum disorder that significantly influences the neurodevelopmental trajectory of autistic children. Initially, we define autism spectrum disorder and explore its societal implications. Following this, we examine the need for technological aid and the potentialities of robot-assisted autism therapy. We then define joint attention and highlight its crucial role in children's social and cognitive development. Subsequently, we analyze the importance of structured interactions and the role of selecting the optimal robot for specific tasks. This is followed by a comparative analysis of the works reviewed earlier, presenting an in-depth examination of two distinct formal models employed to design the prompts and reward system that enables the robot to adapt to children's responses. These models are critically compared to highlight their strengths and limitations. Next, we introduce a novel algorithm to address the identified limitations, integrating interactive environmental factors and a more sophisticated prompting and reward system. Finally, we propose further research directions, discuss the most relevant open questions, and draw conclusions regarding the effectiveness of social robotics in the medical treatment of autism spectrum disorders.

Deep learning has become the dominant approach in coping with various tasks in Natural LanguageProcessing (NLP). Although text inputs are typically represented as a sequence of tokens, there isa rich variety of NLP problems that can be best expressed with a graph structure. As a result, thereis a surge of interests in developing new deep learning techniques on graphs for a large numberof NLP tasks. In this survey, we present a comprehensive overview onGraph Neural Networks(GNNs) for Natural Language Processing. We propose a new taxonomy of GNNs for NLP, whichsystematically organizes existing research of GNNs for NLP along three axes: graph construction,graph representation learning, and graph based encoder-decoder models. We further introducea large number of NLP applications that are exploiting the power of GNNs and summarize thecorresponding benchmark datasets, evaluation metrics, and open-source codes. Finally, we discussvarious outstanding challenges for making the full use of GNNs for NLP as well as future researchdirections. To the best of our knowledge, this is the first comprehensive overview of Graph NeuralNetworks for Natural Language Processing.

Semi-supervised learning on class-imbalanced data, although a realistic problem, has been under studied. While existing semi-supervised learning (SSL) methods are known to perform poorly on minority classes, we find that they still generate high precision pseudo-labels on minority classes. By exploiting this property, in this work, we propose Class-Rebalancing Self-Training (CReST), a simple yet effective framework to improve existing SSL methods on class-imbalanced data. CReST iteratively retrains a baseline SSL model with a labeled set expanded by adding pseudo-labeled samples from an unlabeled set, where pseudo-labeled samples from minority classes are selected more frequently according to an estimated class distribution. We also propose a progressive distribution alignment to adaptively adjust the rebalancing strength dubbed CReST+. We show that CReST and CReST+ improve state-of-the-art SSL algorithms on various class-imbalanced datasets and consistently outperform other popular rebalancing methods.

北京阿比特科技有限公司