亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Take a multiplicative monoid of sequences in which the multiplication is given by Hadamard product. The set of linear combinations of interleaving monoid elements then yields a ring. We consider such a construction for the monoid of hypergeometric sequences, yielding what we call the ring of hypergeometric-type sequences -- a subring of the ring of holonomic sequences. We present two algorithms in this setting: one for computing holonomic recurrence equations from hypergeometric-type normal forms and the other for finding products of hypergeometric-type terms. These are newly implemented commands in our Maple package $\texttt{HyperTypeSeq}$, which we also describe.

相關內容

Most multi-modal tasks can be formulated into problems of either generation or embedding. Existing models usually tackle these two types of problems by decoupling language modules into a text decoder for generation, and a text encoder for embedding. To explore the minimalism of multi-modal paradigms, we attempt to achieve only one model per modality in this work. We propose a Multi-Modal Generative Embedding Model (MM-GEM), whereby the generative and embedding objectives are encapsulated in one Large Language Model. We also propose a PoolAggregator to boost efficiency and enable the ability of fine-grained embedding and generation. A surprising finding is that these two objectives do not significantly conflict with each other. For example, MM-GEM instantiated from ViT-Large and TinyLlama shows competitive performance on benchmarks for multimodal embedding models such as cross-modal retrieval and zero-shot classification, while has good ability of image captioning. Additionally, MM-GEM can seamlessly execute region-level image caption generation and retrieval tasks. Besides, the advanced text model in MM-GEM brings over 5% improvement in Recall@1 for long text and image retrieval.

In contrast to the incremental classification task, the incremental detection task is characterized by the presence of data ambiguity, as an image may have differently labeled bounding boxes across multiple continuous learning stages. This phenomenon often impairs the model's ability to effectively learn new classes. However, existing research has paid less attention to the forward compatibility of the model, which limits its suitability for incremental learning. To overcome this obstacle, we propose leveraging a visual-language model such as CLIP to generate text feature embeddings for different class sets, which enhances the feature space globally. We then employ super-classes to replace the unavailable novel classes in the early learning stage to simulate the incremental scenario. Finally, we utilize the CLIP image encoder to accurately identify potential objects. We incorporate the finely recognized detection boxes as pseudo-annotations into the training process, thereby further improving the detection performance. We evaluate our approach on various incremental learning settings using the PASCAL VOC 2007 dataset, and our approach outperforms state-of-the-art methods, particularly for recognizing the new classes.

Online experimentation with interference is a common challenge in modern applications such as e-commerce and adaptive clinical trials in medicine. For example, in online marketplaces, the revenue of a good depends on discounts applied to competing goods. Statistical inference with interference is widely studied in the offline setting, but far less is known about how to adaptively assign treatments to minimize regret. We address this gap by studying a multi-armed bandit (MAB) problem where a learner (e-commerce platform) sequentially assigns one of possible $\mathcal{A}$ actions (discounts) to $N$ units (goods) over $T$ rounds to minimize regret (maximize revenue). Unlike traditional MAB problems, the reward of each unit depends on the treatments assigned to other units, i.e., there is interference across the underlying network of units. With $\mathcal{A}$ actions and $N$ units, minimizing regret is combinatorially difficult since the action space grows as $\mathcal{A}^N$. To overcome this issue, we study a sparse network interference model, where the reward of a unit is only affected by the treatments assigned to $s$ neighboring units. We use tools from discrete Fourier analysis to develop a sparse linear representation of the unit-specific reward $r_n: [\mathcal{A}]^N \rightarrow \mathbb{R} $, and propose simple, linear regression-based algorithms to minimize regret. Importantly, our algorithms achieve provably low regret both when the learner observes the interference neighborhood for all units and when it is unknown. This significantly generalizes other works on this topic which impose strict conditions on the strength of interference on a known network, and also compare regret to a markedly weaker optimal action. Empirically, we corroborate our theoretical findings via numerical simulations.

The ability of Large Language Models (LLMs) to critique and refine their reasoning is crucial for their application in evaluation, feedback provision, and self-improvement. This paper introduces CriticBench, a comprehensive benchmark designed to assess LLMs' abilities to critique and rectify their reasoning across a variety of tasks. CriticBench encompasses five reasoning domains: mathematical, commonsense, symbolic, coding, and algorithmic. It compiles 15 datasets and incorporates responses from three LLM families. Utilizing CriticBench, we evaluate and dissect the performance of 17 LLMs in generation, critique, and correction reasoning, i.e., GQC reasoning. Our findings reveal: (1) a linear relationship in GQC capabilities, with critique-focused training markedly enhancing performance; (2) a task-dependent variation in correction effectiveness, with logic-oriented tasks being more amenable to correction; (3) GQC knowledge inconsistencies that decrease as model size increases; and (4) an intriguing inter-model critiquing dynamic, where stronger models are better at critiquing weaker ones, while weaker models can surprisingly surpass stronger ones in their self-critique. We hope these insights into the nuanced critique-correct reasoning of LLMs will foster further research in LLM critique and self-improvement.

Graph coarsening aims to reduce the size of a large graph while preserving some of its key properties, which has been used in many applications to reduce computational load and memory footprint. For instance, in graph machine learning, training Graph Neural Networks (GNNs) on coarsened graphs leads to drastic savings in time and memory. However, GNNs rely on the Message-Passing (MP) paradigm, and classical spectral preservation guarantees for graph coarsening do not directly lead to theoretical guarantees when performing naive message-passing on the coarsened graph. In this work, we propose a new message-passing operation specific to coarsened graphs, which exhibit theoretical guarantees on the preservation of the propagated signal. Interestingly, and in a sharp departure from previous proposals, this operation on coarsened graphs is oriented, even when the original graph is undirected. We conduct node classification tasks on synthetic and real data and observe improved results compared to performing naive message-passing on the coarsened graph.

3D printing of surfaces has become an established method for prototyping and visualisation. However, surfaces often contain certain degenerations, such as self-intersecting faces or non-manifold parts, which pose problems in obtaining a 3D printable file. Therefore, it is necessary to examine these degenerations beforehand. Surfaces in three-dimensional space can be represented as embedded simplicial complexes describing a triangulation of the surface. We use this combinatorial description, and the notion of embedded simplicial surfaces (which can be understood as well-behaved surfaces) to give a framework for obtaining 3D printable files. This provides a new perspective on self-intersecting triangulated surfaces in three-dimensional space. Our method first retriangulates a surface using a minimal number of triangles, then computes its outer hull, and finally treats non-manifold parts. To this end, we prove an initialisation criterion for the computation of the outer hull. We also show how symmetry properties can be used to simplify computations. Implementations of the proposed algorithms are given in the computer algebra system GAP4. To verify our methods, we use a dataset of self-intersecting symmetric icosahedra. Exploiting the symmetry of the underlying embedded complex leads to a notable speed-up and enhanced numerical robustness when computing a retriangulation, compared to methods that do not take advantage of symmetry.

We revisit completion modulo equational theories for left-linear term rewrite systems where unification modulo the theory is avoided and the normal rewrite relation can be used in order to decide validity questions. To that end, we give a new correctness proof for finite runs and establish a simulation result between the two inference systems known from the literature. Given a concrete reduction order, novel canonicity results show that the resulting complete systems are unique up to the representation of their rules' right-hand sides. Furthermore, we show how left-linear AC completion can be simulated by general AC completion. In particular, this result allows us to switch from the former to the latter at any point during a completion process.

We introduce the concept of inverse feasibility for linear forward models as a tool to enhance OTA FL algorithms. Inverse feasibility is defined as an upper bound on the condition number of the forward operator as a function of its parameters. We analyze an existing OTA FL model using this definition, identify areas for improvement, and propose a new OTA FL model. Numerical experiments illustrate the main implications of the theoretical results. The proposed framework, which is based on inverse problem theory, can potentially complement existing notions of security and privacy by providing additional desirable characteristics to networks.

It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.

We propose a novel single shot object detection network named Detection with Enriched Semantics (DES). Our motivation is to enrich the semantics of object detection features within a typical deep detector, by a semantic segmentation branch and a global activation module. The segmentation branch is supervised by weak segmentation ground-truth, i.e., no extra annotation is required. In conjunction with that, we employ a global activation module which learns relationship between channels and object classes in a self-supervised manner. Comprehensive experimental results on both PASCAL VOC and MS COCO detection datasets demonstrate the effectiveness of the proposed method. In particular, with a VGG16 based DES, we achieve an mAP of 81.7 on VOC2007 test and an mAP of 32.8 on COCO test-dev with an inference speed of 31.5 milliseconds per image on a Titan Xp GPU. With a lower resolution version, we achieve an mAP of 79.7 on VOC2007 with an inference speed of 13.0 milliseconds per image.

北京阿比特科技有限公司