3D printing of surfaces has become an established method for prototyping and visualisation. However, surfaces often contain certain degenerations, such as self-intersecting faces or non-manifold parts, which pose problems in obtaining a 3D printable file. Therefore, it is necessary to examine these degenerations beforehand. Surfaces in three-dimensional space can be represented as embedded simplicial complexes describing a triangulation of the surface. We use this combinatorial description, and the notion of embedded simplicial surfaces (which can be understood as well-behaved surfaces) to give a framework for obtaining 3D printable files. This provides a new perspective on self-intersecting triangulated surfaces in three-dimensional space. Our method first retriangulates a surface using a minimal number of triangles, then computes its outer hull, and finally treats non-manifold parts. To this end, we prove an initialisation criterion for the computation of the outer hull. We also show how symmetry properties can be used to simplify computations. Implementations of the proposed algorithms are given in the computer algebra system GAP4. To verify our methods, we use a dataset of self-intersecting symmetric icosahedra. Exploiting the symmetry of the underlying embedded complex leads to a notable speed-up and enhanced numerical robustness when computing a retriangulation, compared to methods that do not take advantage of symmetry.
Kriging is an established methodology for predicting spatial data in geostatistics. Current kriging techniques can handle linear dependencies on spatially referenced covariates. Although splines have shown promise in capturing nonlinear dependencies of covariates, their combination with kriging, especially in handling count data, remains underexplored. This paper proposes a novel Bayesian approach to the low-rank representation of geoadditive models, which integrates splines and kriging to account for both spatial correlations and nonlinear dependencies of covariates. The proposed method accommodates Gaussian and count data inherent in many geospatial datasets. Additionally, Laplace approximations to selected posterior distributions enhances computational efficiency, resulting in faster computation times compared to Markov chain Monte Carlo techniques commonly used for Bayesian inference. Method performance is assessed through a simulation study, demonstrating the effectiveness of the proposed approach. The methodology is applied to the analysis of heavy metal concentrations in the Meuse river and vulnerability to the coronavirus disease 2019 (COVID-19) in Belgium. Through this work, we provide a new flexible and computationally efficient framework for analyzing spatial data.
Data augmentation is widely applied and has shown its benefits in different machine learning tasks. However, as recently observed in some downstream tasks, data augmentation may introduce an unfair impact on classifications. While it can improve the performance of some classes, it can actually be detrimental for other classes, which can be problematic in some application domains. In this paper, to counteract this phenomenon, we propose a FAir Classification approach with a Two-player game (FACT). We first formulate the training of a classifier with data augmentation as a fair optimization problem, which can be further written as an adversarial two-player game. Following this formulation, we propose a novel multiplicative weight optimization algorithm, for which we theoretically prove that it can converge to a solution that is fair over classes. Interestingly, our formulation also reveals that this fairness issue over classes is not due to data augmentation only, but is in fact a general phenomenon. Our empirical experiments demonstrate that the performance of our learned classifiers is indeed more fairly distributed over classes in five datasets, with only limited impact on the average accuracy.
Multimodal analysis has recently drawn much interest in affective computing, since it can improve the overall accuracy of emotion recognition over isolated uni-modal approaches. The most effective techniques for multimodal emotion recognition efficiently leverage diverse and complimentary sources of information, such as facial, vocal, and physiological modalities, to provide comprehensive feature representations. In this paper, we focus on dimensional emotion recognition based on the fusion of facial and vocal modalities extracted from videos, where complex spatiotemporal relationships may be captured. Most of the existing fusion techniques rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complimentary nature of audio-visual (A-V) modalities. We introduce a cross-attentional fusion approach to extract the salient features across A-V modalities, allowing for accurate prediction of continuous values of valence and arousal. Our new cross-attentional A-V fusion model efficiently leverages the inter-modal relationships. In particular, it computes cross-attention weights to focus on the more contributive features across individual modalities, and thereby combine contributive feature representations, which are then fed to fully connected layers for the prediction of valence and arousal. The effectiveness of the proposed approach is validated experimentally on videos from the RECOLA and Fatigue (private) data-sets. Results indicate that our cross-attentional A-V fusion model is a cost-effective approach that outperforms state-of-the-art fusion approaches. Code is available: \url{//github.com/praveena2j/Cross-Attentional-AV-Fusion}
Distribution shift is a key challenge for predictive models in practice, creating the need to identify potentially harmful shifts in advance of deployment. Existing work typically defines these worst-case shifts as ones that most degrade the individual-level accuracy of the model. However, when models are used to make a downstream population-level decision like the allocation of a scarce resource, individual-level accuracy may be a poor proxy for performance on the task at hand. We introduce a novel framework that employs a hierarchical model structure to identify worst-case distribution shifts in predictive resource allocation settings by capturing shifts both within and across instances of the decision problem. This task is more difficult than in standard distribution shift settings due to combinatorial interactions, where decisions depend on the joint presence of individuals in the allocation task. We show that the problem can be reformulated as a submodular optimization problem, enabling efficient approximations of worst-case loss. Applying our framework to real data, we find empirical evidence that worst-case shifts identified by one metric often significantly diverge from worst-case distributions identified by other metrics.
Data augmentation has been widely used to improve generalizability of machine learning models. However, comparatively little work studies data augmentation for graphs. This is largely due to the complex, non-Euclidean structure of graphs, which limits possible manipulation operations. Augmentation operations commonly used in vision and language have no analogs for graphs. Our work studies graph data augmentation for graph neural networks (GNNs) in the context of improving semi-supervised node-classification. We discuss practical and theoretical motivations, considerations and strategies for graph data augmentation. Our work shows that neural edge predictors can effectively encode class-homophilic structure to promote intra-class edges and demote inter-class edges in given graph structure, and our main contribution introduces the GAug graph data augmentation framework, which leverages these insights to improve performance in GNN-based node classification via edge prediction. Extensive experiments on multiple benchmarks show that augmentation via GAug improves performance across GNN architectures and datasets.
Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike entity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
Learning with limited data is a key challenge for visual recognition. Few-shot learning methods address this challenge by learning an instance embedding function from seen classes and apply the function to instances from unseen classes with limited labels. This style of transfer learning is task-agnostic: the embedding function is not learned optimally discriminative with respect to the unseen classes, where discerning among them is the target task. In this paper, we propose a novel approach to adapt the embedding model to the target classification task, yielding embeddings that are task-specific and are discriminative. To this end, we employ a type of self-attention mechanism called Transformer to transform the embeddings from task-agnostic to task-specific by focusing on relating instances from the test instances to the training instances in both seen and unseen classes. Our approach also extends to both transductive and generalized few-shot classification, two important settings that have essential use cases. We verify the effectiveness of our model on two standard benchmark few-shot classification datasets --- MiniImageNet and CUB, where our approach demonstrates state-of-the-art empirical performance.
Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.