亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Multimodal analysis has recently drawn much interest in affective computing, since it can improve the overall accuracy of emotion recognition over isolated uni-modal approaches. The most effective techniques for multimodal emotion recognition efficiently leverage diverse and complimentary sources of information, such as facial, vocal, and physiological modalities, to provide comprehensive feature representations. In this paper, we focus on dimensional emotion recognition based on the fusion of facial and vocal modalities extracted from videos, where complex spatiotemporal relationships may be captured. Most of the existing fusion techniques rely on recurrent networks or conventional attention mechanisms that do not effectively leverage the complimentary nature of audio-visual (A-V) modalities. We introduce a cross-attentional fusion approach to extract the salient features across A-V modalities, allowing for accurate prediction of continuous values of valence and arousal. Our new cross-attentional A-V fusion model efficiently leverages the inter-modal relationships. In particular, it computes cross-attention weights to focus on the more contributive features across individual modalities, and thereby combine contributive feature representations, which are then fed to fully connected layers for the prediction of valence and arousal. The effectiveness of the proposed approach is validated experimentally on videos from the RECOLA and Fatigue (private) data-sets. Results indicate that our cross-attentional A-V fusion model is a cost-effective approach that outperforms state-of-the-art fusion approaches. Code is available: \url{//github.com/praveena2j/Cross-Attentional-AV-Fusion}

相關內容

Facial expression recognition (FER) is vital for human-computer interaction and emotion analysis, yet recognizing expressions in low-resolution images remains challenging. This paper introduces a practical method called Dynamic Resolution Guidance for Facial Expression Recognition (DRGFER) to effectively recognize facial expressions in images with varying resolutions without compromising FER model accuracy. Our framework comprises two main components: the Resolution Recognition Network (RRN) and the Multi-Resolution Adaptation Facial Expression Recognition Network (MRAFER). The RRN determines image resolution, outputs a binary vector, and the MRAFER assigns images to suitable facial expression recognition networks based on resolution. We evaluated DRGFER on widely-used datasets RAFDB and FERPlus, demonstrating that our method retains optimal model performance at each resolution and outperforms alternative resolution approaches. The proposed framework exhibits robustness against resolution variations and facial expressions, offering a promising solution for real-world applications.

Compared to traditional sentiment analysis, which only considers text, multimodal sentiment analysis needs to consider emotional signals from multimodal sources simultaneously and is therefore more consistent with the way how humans process sentiment in real-world scenarios. It involves processing emotional information from various sources such as natural language, images, videos, audio, physiological signals, etc. However, although other modalities also contain diverse emotional cues, natural language usually contains richer contextual information and therefore always occupies a crucial position in multimodal sentiment analysis. The emergence of ChatGPT has opened up immense potential for applying large language models (LLMs) to text-centric multimodal tasks. However, it is still unclear how existing LLMs can adapt better to text-centric multimodal sentiment analysis tasks. This survey aims to (1) present a comprehensive review of recent research in text-centric multimodal sentiment analysis tasks, (2) examine the potential of LLMs for text-centric multimodal sentiment analysis, outlining their approaches, advantages, and limitations, (3) summarize the application scenarios of LLM-based multimodal sentiment analysis technology, and (4) explore the challenges and potential research directions for multimodal sentiment analysis in the future.

Adaptive treatment assignment algorithms, such as bandit and reinforcement learning algorithms, are increasingly used in digital health intervention clinical trials. Causal inference and related data analyses are critical for evaluating digital health interventions, deciding how to refine the intervention, and deciding whether to roll-out the intervention more broadly. However the replicability of these analyses has received relatively little attention. This work investigates the replicability of statistical analyses from trials deploying adaptive treatment assignment algorithms. We demonstrate that many standard statistical estimators can be inconsistent and fail to be replicable across repetitions of the clinical trial, even as the sample size grows large. We show that this non-replicability is intimately related to properties of the adaptive algorithm itself. We introduce a formal definition of a "replicable bandit algorithm" and prove that under such algorithms, a wide variety of common statistical analyses are guaranteed to be consistent. We present both theoretical results and simulation studies based on a mobile health oral health self-care intervention. Our findings underscore the importance of designing adaptive algorithms with replicability in mind, especially for settings like digital health where deployment decisions rely heavily on replicated evidence. We conclude by discussing open questions on the connections between algorithm design, statistical inference, and experimental replicability.

Generative models for molecules have shown considerable promise for use in computational chemistry, but remain difficult to use for non-experts. For this reason, we introduce open-source infrastructure for easily building generative molecular models into the widely used DeepChem [Ramsundar et al., 2019] library with the aim of creating a robust and reusable molecular generation pipeline. In particular, we add high quality PyTorch [Paszke et al., 2019] implementations of the Molecular Generative Adversarial Networks (MolGAN) [Cao and Kipf, 2022] and Normalizing Flows [Papamakarios et al., 2021]. Our implementations show strong performance comparable with past work [Kuznetsov and Polykovskiy, 2021, Cao and Kipf, 2022].

Uncertainty quantification, by means of confidence interval (CI) construction, has been a fundamental problem in statistics and also important in risk-aware decision-making. In this paper, we revisit the basic problem of CI construction, but in the setting of expensive black-box models. This means we are confined to using a low number of model runs, and without the ability to obtain auxiliary model information such as gradients. In this case, there exist classical methods based on data splitting, and newer methods based on suitable resampling. However, while all these resulting CIs have similarly accurate coverage in large sample, their efficiencies in terms of interval length differ, and a systematic understanding of which method and configuration attains the shortest interval appears open. Motivated by this, we create a theoretical framework to study the statistical optimality on CI tightness under computation constraint. Our theory shows that standard batching, but also carefully constructed new formulas using uneven-size or overlapping batches, batched jackknife, and the so-called cheap bootstrap and its weighted generalizations, are statistically optimal. Our developments build on a new bridge of the classical notion of uniformly most accurate unbiasedness with batching and resampling, by viewing model runs as asymptotically Gaussian "data", as well as a suitable notion of homogeneity for CIs.

Variants of the GSEMO algorithm using multi-objective formulations have been successfully analyzed and applied to optimize chance-constrained submodular functions. However, due to the effect of the increasing population size of the GSEMO algorithm considered in these studies from the algorithms, the approach becomes ineffective if the number of trade-offs obtained grows quickly during the optimization run. In this paper, we apply the sliding-selection approach introduced in [21] to the optimization of chance-constrained monotone submodular functions. We theoretically analyze the resulting SW-GSEMO algorithm which successfully limits the population size as a key factor that impacts the runtime and show that this allows it to obtain better runtime guarantees than the best ones currently known for the GSEMO. In our experimental study, we compare the performance of the SW-GSEMO to the GSEMO and NSGA-II on the maximum coverage problem under the chance constraint and show that the SW-GSEMO outperforms the other two approaches in most cases. In order to get additional insights into the optimization behavior of SW-GSEMO, we visualize the selection behavior of SW-GSEMO during its optimization process and show it beats other algorithms to obtain the highest quality of solution in variable instances.

The similarity between the question and indexed documents is a crucial factor in document retrieval for retrieval-augmented question answering. Although this is typically the only method for obtaining the relevant documents, it is not the sole approach when dealing with entity-centric questions. In this study, we propose Entity Retrieval, a novel retrieval method which rather than relying on question-document similarity, depends on the salient entities within the question to identify the retrieval documents. We conduct an in-depth analysis of the performance of both dense and sparse retrieval methods in comparison to Entity Retrieval. Our findings reveal that our method not only leads to more accurate answers to entity-centric questions but also operates more efficiently.

Domain shift is a fundamental problem in visual recognition which typically arises when the source and target data follow different distributions. The existing domain adaptation approaches which tackle this problem work in the closed-set setting with the assumption that the source and the target data share exactly the same classes of objects. In this paper, we tackle a more realistic problem of open-set domain shift where the target data contains additional classes that are not present in the source data. More specifically, we introduce an end-to-end Progressive Graph Learning (PGL) framework where a graph neural network with episodic training is integrated to suppress underlying conditional shift and adversarial learning is adopted to close the gap between the source and target distributions. Compared to the existing open-set adaptation approaches, our approach guarantees to achieve a tighter upper bound of the target error. Extensive experiments on three standard open-set benchmarks evidence that our approach significantly outperforms the state-of-the-arts in open-set domain adaptation.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

While existing machine learning models have achieved great success for sentiment classification, they typically do not explicitly capture sentiment-oriented word interaction, which can lead to poor results for fine-grained analysis at the snippet level (a phrase or sentence). Factorization Machine provides a possible approach to learning element-wise interaction for recommender systems, but they are not directly applicable to our task due to the inability to model contexts and word sequences. In this work, we develop two Position-aware Factorization Machines which consider word interaction, context and position information. Such information is jointly encoded in a set of sentiment-oriented word interaction vectors. Compared to traditional word embeddings, SWI vectors explicitly capture sentiment-oriented word interaction and simplify the parameter learning. Experimental results show that while they have comparable performance with state-of-the-art methods for document-level classification, they benefit the snippet/sentence-level sentiment analysis.

北京阿比特科技有限公司