亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Compared to traditional sentiment analysis, which only considers text, multimodal sentiment analysis needs to consider emotional signals from multimodal sources simultaneously and is therefore more consistent with the way how humans process sentiment in real-world scenarios. It involves processing emotional information from various sources such as natural language, images, videos, audio, physiological signals, etc. However, although other modalities also contain diverse emotional cues, natural language usually contains richer contextual information and therefore always occupies a crucial position in multimodal sentiment analysis. The emergence of ChatGPT has opened up immense potential for applying large language models (LLMs) to text-centric multimodal tasks. However, it is still unclear how existing LLMs can adapt better to text-centric multimodal sentiment analysis tasks. This survey aims to (1) present a comprehensive review of recent research in text-centric multimodal sentiment analysis tasks, (2) examine the potential of LLMs for text-centric multimodal sentiment analysis, outlining their approaches, advantages, and limitations, (3) summarize the application scenarios of LLM-based multimodal sentiment analysis technology, and (4) explore the challenges and potential research directions for multimodal sentiment analysis in the future.

相關內容

We provide a unified analysis of two-timescale gradient descent ascent (TTGDA) for solving structured nonconvex minimax optimization problems in the form of $\min_\textbf{x} \max_{\textbf{y} \in Y} f(\textbf{x}, \textbf{y})$, where the objective function $f(\textbf{x}, \textbf{y})$ is nonconvex in $\textbf{x}$ and concave in $\textbf{y}$, and the constraint set $Y \subseteq \mathbb{R}^n$ is convex and bounded. In the convex-concave setting, the single-timescale gradient descent ascent (GDA) algorithm is widely used in applications and has been shown to have strong convergence guarantees. In more general settings, however, it can fail to converge. Our contribution is to design TTGDA algorithms that are effective beyond the convex-concave setting, efficiently finding a stationary point of the function $\Phi(\cdot) := \max_{\textbf{y} \in Y} f(\cdot, \textbf{y})$. We also establish theoretical bounds on the complexity of solving both smooth and nonsmooth nonconvex-concave minimax optimization problems. To the best of our knowledge, this is the first systematic analysis of TTGDA for nonconvex minimax optimization, shedding light on its superior performance in training generative adversarial networks (GANs) and in other real-world application problems.

We consider an extension of the Newton-MR algorithm for nonconvex unconstrained optimization to the settings where Hessian information is approximated. Under a particular noise model on the Hessian matrix, we investigate the iteration and operation complexities of this variant to achieve appropriate sub-optimality criteria in several nonconvex settings. We do this by first considering functions that satisfy the (generalized) Polyak-\L ojasiewicz condition, a special sub-class of nonconvex functions. We show that, under certain conditions, our algorithm achieves global linear convergence rate. We then consider more general nonconvex settings where the rate to obtain first order sub-optimality is shown to be sub-linear. In all these settings, we show that our algorithm converges regardless of the degree of approximation of the Hessian as well as the accuracy of the solution to the sub-problem. Finally, we compare the performance of our algorithm with several alternatives on a few machine learning problems.

Artifact removal in electroencephalography (EEG) is a longstanding challenge that significantly impacts neuroscientific analysis and brain-computer interface (BCI) performance. Tackling this problem demands advanced algorithms, extensive noisy-clean training data, and thorough evaluation strategies. This study presents the Artifact Removal Transformer (ART), an innovative EEG denoising model employing transformer architecture to adeptly capture the transient millisecond-scale dynamics characteristic of EEG signals. Our approach offers a holistic, end-to-end denoising solution for diverse artifact types in multichannel EEG data. We enhanced the generation of noisy-clean EEG data pairs using an independent component analysis, thus fortifying the training scenarios critical for effective supervised learning. We performed comprehensive validations using a wide range of open datasets from various BCI applications, employing metrics like mean squared error and signal-to-noise ratio, as well as sophisticated techniques such as source localization and EEG component classification. Our evaluations confirm that ART surpasses other deep-learning-based artifact removal methods, setting a new benchmark in EEG signal processing. This advancement not only boosts the accuracy and reliability of artifact removal but also promises to catalyze further innovations in the field, facilitating the study of brain dynamics in naturalistic environments.

Long text generation, such as novel writing and discourse-level translation with extremely long contexts, presents significant challenges to current language models. Existing methods mainly focus on extending the model's context window through strategies like length extrapolation. However, these approaches demand substantial hardware resources during the training and/or inference phases. Our proposed method, Temp-Lora, introduces an alternative concept. Instead of relying on the KV cache to store all context information, we embeds this information directly into a temporary Lora module. In the process of long text generation, this module is progressively trained with text generated previously. This approach not only efficiently preserves contextual knowledge but also prevents any permanent alteration to the model's parameters given that the module is discarded post-generation. Extensive experiments on the PG19 language modeling benchmark and the GuoFeng discourse-level translation benchmark validate the effectiveness of Temp-Lora. Our results show that: 1) Temp-Lora substantially enhances generation quality for long text, as indicated by a 13.2% decrease in perplexity (PPL) on a subset of PG19, and a 29.3% decrease in PPL along with a 113.2% increase in BLEU score on a subset of GuoFeng, 2) Temp-Lora is compatible with and enhances most existing long text generation methods, and 3) Temp-Lora can greatly reduce computational costs by shortening the context window. For example, we can ensure a moderate improvement in generation quality (a decrease of 3.8% in PPL) while enabling a 51.5% memory usage reduction and a 60.0% decrease in latency for inference.

Online conversations are particularly susceptible to derailment, which can manifest itself in the form of toxic communication patterns including disrespectful comments and abuse. Forecasting conversation derailment predicts signs of derailment in advance enabling proactive moderation of conversations. State-of-the-art approaches to conversation derailment forecasting sequentially encode conversations and use graph neural networks to model dialogue user dynamics. However, existing graph models are not able to capture complex conversational characteristics such as context propagation and emotional shifts. The use of common sense knowledge enables a model to capture such characteristics, thus improving performance. Following this approach, here we derive commonsense statements from a knowledge base of dialogue contextual information to enrich a graph neural network classification architecture. We fuse the multi-source information on utterance into capsules, which are used by a transformer-based forecaster to predict conversation derailment. Our model captures conversation dynamics and context propagation, outperforming the state-of-the-art models on the CGA and CMV benchmark datasets

Context. Risk analysis assesses potential risks in specific scenarios. Risk analysis principles are context-less; the same methodology can be applied to a risk connected to health and information technology security. Risk analysis requires a vast knowledge of national and international regulations and standards and is time and effort-intensive. A large language model can quickly summarize information in less time than a human and can be fine-tuned to specific tasks. Aim. Our empirical study aims to investigate the effectiveness of Retrieval-Augmented Generation and fine-tuned LLM in risk analysis. To our knowledge, no prior study has explored its capabilities in risk analysis. Method. We manually curated 193 unique scenarios leading to 1283 representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years. We compared the base GPT-3.5 and GPT-4 models versus their Retrieval-Augmented Generation and fine-tuned counterparts. We employ two human experts as competitors of the models and three other human experts to review the models and the former human experts' analysis. The reviewers analyzed 5,000 scenario analyses. Results and Conclusions. Human experts demonstrated higher accuracy, but LLMs are quicker and more actionable. Moreover, our findings show that RAG-assisted LLMs have the lowest hallucination rates, effectively uncovering hidden risks and complementing human expertise. Thus, the choice of model depends on specific needs, with FTMs for accuracy, RAG for hidden risks discovery, and base models for comprehensiveness and actionability. Therefore, experts can leverage LLMs as an effective complementing companion in risk analysis within a condensed timeframe. They can also save costs by averting unnecessary expenses associated with implementing unwarranted countermeasures.

Localizing sources of troublesome oscillations, particularly forced oscillations (FOs), in power systems has received considerable attention over the last few years. This is driven in part by the massive deployment of phasor measurement units (PMUs) that capture these oscillations when they occur; and in part by the increasing incidents of FOs due to malfunctioning components, wind power fluctuations, and/or cyclic loads. Capitalizing on the frequency divider formula of [1], we develop methods to localize single and multiple oscillatory sources using bus frequency measurements. The method to localize a single oscillation source does not require knowledge of network parameters. However, the method for localizing FOs caused by multiple sources requires this knowledge. We explain the reasoning behind this knowledge difference as well as demonstrate the success of our methods for source localization in multiple test systems.

Human intelligence thrives on the concept of cognitive synergy, where collaboration and information integration among different cognitive processes yield superior outcomes compared to individual cognitive processes in isolation. Although Large Language Models (LLMs) have demonstrated promising performance as general task-solving agents, they still struggle with tasks that require intensive domain knowledge and complex reasoning. In this work, we propose Solo Performance Prompting (SPP), which transforms a single LLM into a cognitive synergist by engaging in multi-turn self-collaboration with multiple personas. A cognitive synergist refers to an intelligent agent that collaborates with multiple minds, combining their individual strengths and knowledge, to enhance problem-solving and overall performance in complex tasks. By dynamically identifying and simulating different personas based on task inputs, SPP unleashes the potential of cognitive synergy in LLMs. We have discovered that assigning multiple, fine-grained personas in LLMs elicits better problem-solving abilities compared to using a single or fixed number of personas. We evaluate SPP on three challenging tasks: Trivia Creative Writing, Codenames Collaborative, and Logic Grid Puzzle, encompassing both knowledge-intensive and reasoning-intensive types. Unlike previous works, such as Chain-of-Thought, that solely enhance the reasoning abilities in LLMs, SPP effectively elicits internal knowledge acquisition abilities, reduces hallucination, and maintains strong reasoning capabilities. Code, data, and prompts can be found at: //github.com/MikeWangWZHL/Solo-Performance-Prompting.git.

Substantial progress has been made recently on developing provably accurate and efficient algorithms for low-rank matrix factorization via nonconvex optimization. While conventional wisdom often takes a dim view of nonconvex optimization algorithms due to their susceptibility to spurious local minima, simple iterative methods such as gradient descent have been remarkably successful in practice. The theoretical footings, however, had been largely lacking until recently. In this tutorial-style overview, we highlight the important role of statistical models in enabling efficient nonconvex optimization with performance guarantees. We review two contrasting approaches: (1) two-stage algorithms, which consist of a tailored initialization step followed by successive refinement; and (2) global landscape analysis and initialization-free algorithms. Several canonical matrix factorization problems are discussed, including but not limited to matrix sensing, phase retrieval, matrix completion, blind deconvolution, robust principal component analysis, phase synchronization, and joint alignment. Special care is taken to illustrate the key technical insights underlying their analyses. This article serves as a testament that the integrated consideration of optimization and statistics leads to fruitful research findings.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司