Context. Risk analysis assesses potential risks in specific scenarios. Risk analysis principles are context-less; the same methodology can be applied to a risk connected to health and information technology security. Risk analysis requires a vast knowledge of national and international regulations and standards and is time and effort-intensive. A large language model can quickly summarize information in less time than a human and can be fine-tuned to specific tasks. Aim. Our empirical study aims to investigate the effectiveness of Retrieval-Augmented Generation and fine-tuned LLM in risk analysis. To our knowledge, no prior study has explored its capabilities in risk analysis. Method. We manually curated 193 unique scenarios leading to 1283 representative samples from over 50 mission-critical analyses archived by the industrial context team in the last five years. We compared the base GPT-3.5 and GPT-4 models versus their Retrieval-Augmented Generation and fine-tuned counterparts. We employ two human experts as competitors of the models and three other human experts to review the models and the former human experts' analysis. The reviewers analyzed 5,000 scenario analyses. Results and Conclusions. Human experts demonstrated higher accuracy, but LLMs are quicker and more actionable. Moreover, our findings show that RAG-assisted LLMs have the lowest hallucination rates, effectively uncovering hidden risks and complementing human expertise. Thus, the choice of model depends on specific needs, with FTMs for accuracy, RAG for hidden risks discovery, and base models for comprehensiveness and actionability. Therefore, experts can leverage LLMs as an effective complementing companion in risk analysis within a condensed timeframe. They can also save costs by averting unnecessary expenses associated with implementing unwarranted countermeasures.
Aspect Sentiment Triplet Extraction (ASTE) is a challenging task in sentiment analysis, aiming to provide fine-grained insights into human sentiments. However, existing benchmarks are limited to two domains and do not evaluate model performance on unseen domains, raising concerns about the generalization of proposed methods. Furthermore, it remains unclear if large language models (LLMs) can effectively handle complex sentiment tasks like ASTE. In this work, we address the issue of generalization in ASTE from both a benchmarking and modeling perspective. We introduce a domain-expanded benchmark by annotating samples from diverse domains, enabling evaluation of models in both in-domain and out-of-domain settings. Additionally, we propose CASE, a simple and effective decoding strategy that enhances trustworthiness and performance of LLMs in ASTE. Through comprehensive experiments involving multiple tasks, settings, and models, we demonstrate that CASE can serve as a general decoding strategy for complex sentiment tasks. By expanding the scope of evaluation and providing a more reliable decoding strategy, we aim to inspire the research community to reevaluate the generalizability of benchmarks and models for ASTE. Our code, data, and models are available at //github.com/DAMO-NLP-SG/domain-expanded-aste.
The locally competitive algorithm (LCA) can solve sparse coding problems across a wide range of use cases. Recently, convolution-based LCA approaches have been shown to be highly effective for enhancing robustness for image recognition tasks in vision pipelines. To additionally maximize representational sparsity, LCA with hard-thresholding can be applied. While this combination often yields very good solutions satisfying an $\ell_0$ sparsity criterion, it comes with significant drawbacks for practical application: (i) LCA is very inefficient, typically requiring hundreds of optimization cycles for convergence; (ii) the use of hard-thresholding results in a non-convex loss function, which might lead to suboptimal minima. To address these issues, we propose the Locally Competitive Algorithm with State Warm-up via Predictive Priming (WARP-LCA), which leverages a predictor network to provide a suitable initial guess of the LCA state based on the current input. Our approach significantly improves both convergence speed and the quality of solutions, while maintaining and even enhancing the overall strengths of LCA. We demonstrate that WARP-LCA converges faster by orders of magnitude and reaches better minima compared to conventional LCA. Moreover, the learned representations are more sparse and exhibit superior properties in terms of reconstruction and denoising quality as well as robustness when applied in deep recognition pipelines. Furthermore, we apply WARP-LCA to image denoising tasks, showcasing its robustness and practical effectiveness. Our findings confirm that the naive use of LCA with hard-thresholding results in suboptimal minima, whereas initializing LCA with a predictive guess results in better outcomes. This research advances the field of biologically inspired deep learning by providing a novel approach to convolutional sparse coding.
Functional regression analysis is an established tool for many contemporary scientific applications. Regression problems involving large and complex data sets are ubiquitous, and feature selection is crucial for avoiding overfitting and achieving accurate predictions. We propose a new, flexible and ultra-efficient approach to perform feature selection in a sparse high dimensional function-on-function regression problem, and we show how to extend it to the scalar-on-function framework. Our method, called FAStEN, combines functional data, optimization, and machine learning techniques to perform feature selection and parameter estimation simultaneously. We exploit the properties of Functional Principal Components and the sparsity inherent to the Dual Augmented Lagrangian problem to significantly reduce computational cost, and we introduce an adaptive scheme to improve selection accuracy. In addition, we derive asymptotic oracle properties, which guarantee estimation and selection consistency for the proposed FAStEN estimator. Through an extensive simulation study, we benchmark our approach to the best existing competitors and demonstrate a massive gain in terms of CPU time and selection performance, without sacrificing the quality of the coefficients' estimation. The theoretical derivations and the simulation study provide a strong motivation for our approach. Finally, we present an application to brain fMRI data from the AOMIC PIOP1 study. Complete FAStEN code is provided at //github.com/IBM/funGCN.
To broaden the dissemination of scientific knowledge to diverse audiences, scientific document summarization must simultaneously control multiple attributes such as length and empirical focus. However, existing research typically focuses on controlling single attributes, leaving the compositional control of multiple attributes underexplored. To address this gap, we introduce CCSBench, a benchmark for compositional controllable summarization in the scientific domain. Our benchmark enables fine-grained control over both explicit attributes (e.g., length), which are objective and straightforward, and implicit attributes (e.g., empirical focus), which are more subjective and conceptual. We conduct extensive experiments on GPT-4, LLaMA2, and other popular LLMs under various settings. Our findings reveal significant limitations in large language models' ability to balance trade-offs between control attributes, especially implicit ones that require deeper understanding and abstract reasoning.
Accurate interpretation and visualization of human instructions are crucial for text-to-image (T2I) synthesis. However, current models struggle to capture semantic variations from word order changes, and existing evaluations, relying on indirect metrics like text-image similarity, fail to reliably assess these challenges. This often obscures poor performance on complex or uncommon linguistic patterns by the focus on frequent word combinations. To address these deficiencies, we propose a novel metric called SemVarEffect and a benchmark named SemVarBench, designed to evaluate the causality between semantic variations in inputs and outputs in T2I synthesis. Semantic variations are achieved through two types of linguistic permutations, while avoiding easily predictable literal variations. Experiments reveal that the CogView-3-Plus and Ideogram 2 performed the best, achieving a score of 0.2/1. Semantic variations in object relations are less understood than attributes, scoring 0.07/1 compared to 0.17-0.19/1. We found that cross-modal alignment in UNet or Transformers plays a crucial role in handling semantic variations, a factor previously overlooked by a focus on textual encoders. Our work establishes an effective evaluation framework that advances the T2I synthesis community's exploration of human instruction understanding.
Aligned LLMs are secure, capable of recognizing and refusing to answer malicious questions. However, the role of internal parameters in maintaining such security is not well understood yet, further these models can be vulnerable to security degradation when fine-tuned with non-malicious backdoor or normal data. To address these challenges, our work uncovers the mechanism behind security in aligned LLMs at the parameter level, identifying a small set of contiguous layers in the middle of the model that are crucial for distinguishing malicious queries from normal ones, referred to as "safety layers". We first confirm the existence of these safety layers by analyzing variations in input vectors within the model's internal layers. Additionally, we leverage the over-rejection phenomenon and parameters scaling analysis to precisely locate the safety layers. Building on these findings, we propose a novel fine-tuning approach, Safely Partial-Parameter Fine-Tuning (SPPFT), that fixes the gradient of the safety layers during fine-tuning to address the security degradation. Our experiments demonstrate that the proposed approach can significantly preserve LLM security while maintaining performance and reducing computational resources compared to full fine-tuning.
Deep learning-based algorithms have seen a massive popularity in different areas of remote sensing image analysis over the past decade. Recently, transformers-based architectures, originally introduced in natural language processing, have pervaded computer vision field where the self-attention mechanism has been utilized as a replacement to the popular convolution operator for capturing long-range dependencies. Inspired by recent advances in computer vision, remote sensing community has also witnessed an increased exploration of vision transformers for a diverse set of tasks. Although a number of surveys have focused on transformers in computer vision in general, to the best of our knowledge we are the first to present a systematic review of recent advances based on transformers in remote sensing. Our survey covers more than 60 recent transformers-based methods for different remote sensing problems in sub-areas of remote sensing: very high-resolution (VHR), hyperspectral (HSI) and synthetic aperture radar (SAR) imagery. We conclude the survey by discussing different challenges and open issues of transformers in remote sensing. Additionally, we intend to frequently update and maintain the latest transformers in remote sensing papers with their respective code at: //github.com/VIROBO-15/Transformer-in-Remote-Sensing
Generative commonsense reasoning which aims to empower machines to generate sentences with the capacity of reasoning over a set of concepts is a critical bottleneck for text generation. Even the state-of-the-art pre-trained language generation models struggle at this task and often produce implausible and anomalous sentences. One reason is that they rarely consider incorporating the knowledge graph which can provide rich relational information among the commonsense concepts. To promote the ability of commonsense reasoning for text generation, we propose a novel knowledge graph augmented pre-trained language generation model KG-BART, which encompasses the complex relations of concepts through the knowledge graph and produces more logical and natural sentences as output. Moreover, KG-BART can leverage the graph attention to aggregate the rich concept semantics that enhances the model generalization on unseen concept sets. Experiments on benchmark CommonGen dataset verify the effectiveness of our proposed approach by comparing with several strong pre-trained language generation models, particularly KG-BART outperforms BART by 5.80, 4.60, in terms of BLEU-3, 4. Moreover, we also show that the generated context by our model can work as background scenarios to benefit downstream commonsense QA tasks.
The problem of Multiple Object Tracking (MOT) consists in following the trajectory of different objects in a sequence, usually a video. In recent years, with the rise of Deep Learning, the algorithms that provide a solution to this problem have benefited from the representational power of deep models. This paper provides a comprehensive survey on works that employ Deep Learning models to solve the task of MOT on single-camera videos. Four main steps in MOT algorithms are identified, and an in-depth review of how Deep Learning was employed in each one of these stages is presented. A complete experimental comparison of the presented works on the three MOTChallenge datasets is also provided, identifying a number of similarities among the top-performing methods and presenting some possible future research directions.
Recurrent neural nets (RNN) and convolutional neural nets (CNN) are widely used on NLP tasks to capture the long-term and local dependencies, respectively. Attention mechanisms have recently attracted enormous interest due to their highly parallelizable computation, significantly less training time, and flexibility in modeling dependencies. We propose a novel attention mechanism in which the attention between elements from input sequence(s) is directional and multi-dimensional (i.e., feature-wise). A light-weight neural net, "Directional Self-Attention Network (DiSAN)", is then proposed to learn sentence embedding, based solely on the proposed attention without any RNN/CNN structure. DiSAN is only composed of a directional self-attention with temporal order encoded, followed by a multi-dimensional attention that compresses the sequence into a vector representation. Despite its simple form, DiSAN outperforms complicated RNN models on both prediction quality and time efficiency. It achieves the best test accuracy among all sentence encoding methods and improves the most recent best result by 1.02% on the Stanford Natural Language Inference (SNLI) dataset, and shows state-of-the-art test accuracy on the Stanford Sentiment Treebank (SST), Multi-Genre natural language inference (MultiNLI), Sentences Involving Compositional Knowledge (SICK), Customer Review, MPQA, TREC question-type classification and Subjectivity (SUBJ) datasets.