Question Generation (QG) is a task of Natural Language Processing (NLP) that aims at automatically generating questions from text. Many applications can benefit from automatically generated questions, but often it is necessary to curate those questions, either by selecting or editing them. This task is informative on its own, but it is typically done post-generation, and, thus, the effort is wasted. In addition, most existing systems cannot incorporate this feedback back into them easily. In this work, we present a system, GEN, that learns from such (implicit) feedback. Following a pattern-based approach, it takes as input a small set of sentence/question pairs and creates patterns which are then applied to new unseen sentences. Each generated question, after being corrected by the user, is used as a new seed in the next iteration, so more patterns are created each time. We also take advantage of the corrections made by the user to score the patterns and therefore rank the generated questions. Results show that GEN is able to improve by learning from both levels of implicit feedback when compared to the version with no learning, considering the top 5, 10, and 20 questions. Improvements go up from 10%, depending on the metric and strategy used.
We present a framework that formulates visual question answering as modular code generation. In contrast to prior work on modular approaches to VQA, our approach requires no additional training and relies on pre-trained language models (LMs), visual models pre-trained on image-caption pairs, and fifty VQA examples used for in-context learning. The generated Python programs invoke and compose the outputs of the visual models using arithmetic and conditional logic. Our approach improves accuracy on the COVR dataset by at least 3% and on the GQA dataset by roughly 2% compared to the few-shot baseline that does not employ code generation.
Which parts of a dataset will a given model find difficult? Recent work has shown that SGD-trained models have a bias towards simplicity, leading them to prioritize learning a majority class, or to rely upon harmful spurious correlations. Here, we show that the preference for "easy" runs far deeper: A model may prioritize any class or group of the dataset that it finds simple-at the expense of what it finds complex-as measured by performance difference on the test set. When subsets with different levels of complexity align with demographic groups, we term this difficulty disparity, a phenomenon that occurs even with balanced datasets that lack group/label associations. We show how difficulty disparity is a model-dependent quantity, and is further amplified in commonly-used models as selected by typical average performance scores. We quantify an amplification factor across a range of settings in order to compare disparity of different models on a fixed dataset. Finally, we present two real-world examples of difficulty amplification in action, resulting in worse-than-expected performance disparities between groups even when using a balanced dataset. The existence of such disparities in balanced datasets demonstrates that merely balancing sample sizes of groups is not sufficient to ensure unbiased performance. We hope this work presents a step towards measurable understanding of the role of model bias as it interacts with the structure of data, and call for additional model-dependent mitigation methods to be deployed alongside dataset audits.
We consider a variant of matrix completion where entries are revealed in a biased manner, adopting a model akin to that introduced by Ma and Chen. Instead of treating this observation bias as a disadvantage, as is typically the case, our goal is to exploit the shared information between the bias and the outcome of interest to improve predictions. Towards this, we propose a simple two-stage algorithm: (i) interpreting the observation pattern as a fully observed noisy matrix, we apply traditional matrix completion methods to the observation pattern to estimate the distances between the latent factors; (ii) we apply supervised learning on the recovered features to impute missing observations. We establish finite-sample error rates that are competitive with the corresponding supervised learning parametric rates, suggesting that our learning performance is comparable to having access to the unobserved covariates. Empirical evaluation using a real-world dataset reflects similar performance gains, with our algorithm's estimates having 30x smaller mean squared error compared to traditional matrix completion methods.
Large language models (LLMs) can acquire strong code-generation capabilities through few-shot learning. In contrast, supervised fine-tuning is still needed for smaller models to achieve good performance. Such fine-tuning demands a large number of task-specific NL-code pairs, which are expensive to obtain. In this paper, we attempt to transfer the code generation ability of an LLM to a smaller model with the aid of weakly-supervised data. More specifically, we propose explicit knowledge transfer (EKT), which uses the few-shot capabilities of a teacher LLM to create NL-code pairs that we then filter for correctness and fine-tune the student on. We evaluate EKT on the task of generating code solutions to math word problems from the GSM8k dataset. We find that EKT not only yields better performance than training with expert iteration, but also outperforms knowledge distillation, another form of knowledge transfer. A GPT-Neo 1.3B model trained using EKT with a GPT-J teacher achieves a 12.4% pass@100 on GSM8k, while the same student and teacher trained with knowledge distillation yield only a 3.7% pass@100. We also show that it is possible for a student model to outperform the teacher using EKT.
We study the problem of extrapolative controlled generation, i.e., generating sequences with attribute values beyond the range seen in training. This task is of significant importance in automated design, especially drug discovery, where the goal is to design novel proteins that are \textit{better} (e.g., more stable) than existing sequences. Thus, by definition, the target sequences and their attribute values are out of the training distribution, posing challenges to existing methods that aim to directly generate the target sequence. Instead, in this work, we propose Iterative Controlled Extrapolation (ICE) which iteratively makes local edits to a sequence to enable extrapolation. We train the model on synthetically generated sequence pairs that demonstrate small improvement in the attribute value. Results on one natural language task (sentiment analysis) and two protein engineering tasks (ACE2 stability and AAV fitness) show that ICE considerably outperforms state-of-the-art approaches despite its simplicity. Our code and models are available at: //github.com/vishakhpk/iter-extrapolation.
Whereas the recent emergence of large language models (LLMs) like ChatGPT has exhibited impressive general performance, it still has a large gap with fully-supervised models on specific tasks such as multi-span question answering. Previous researches found that in-context learning is an effective approach to exploiting LLM, by using a few task-related labeled data as demonstration examples to construct a few-shot prompt for answering new questions. A popular implementation is to concatenate a few questions and their correct answers through simple templates, informing LLM of the desired output. In this paper, we propose a novel way of employing labeled data such that it also informs LLM of some undesired output, by extending demonstration examples with feedback about answers predicted by an off-the-shelf model, e.g., correct, incorrect, or incomplete. Experiments on three multi-span question answering datasets as well as a keyphrase extraction dataset show that our new prompting strategy consistently improves LLM's in-context learning performance.
The interest in employing automatic speech recognition (ASR) in applications for reading practice has been growing in recent years. In a previous study, we presented an ASR-based Dutch reading tutor application that was developed to provide instantaneous feedback to first-graders learning to read. We saw that ASR has potential at this stage of the reading process, as the results suggested that pupils made progress in reading accuracy and fluency by using the software. In the current study, we used children's speech from an existing corpus (JASMIN) to develop two new ASR systems, and compared the results to those of the previous study. We analyze correct/incorrect classification of the ASR systems using human transcripts at word level, by means of evaluation measures such as Cohen's Kappa, Matthews Correlation Coefficient (MCC), precision, recall and F-measures. We observe improvements for the newly developed ASR systems regarding the agreement with human-based judgment and correct rejection (CR). The accuracy of the ASR systems varies for different reading tasks and word types. Our results suggest that, in the current configuration, it is difficult to classify isolated words. We discuss these results, possible ways to improve our systems and avenues for future research.
Designing and generating new data under targeted properties has been attracting various critical applications such as molecule design, image editing and speech synthesis. Traditional hand-crafted approaches heavily rely on expertise experience and intensive human efforts, yet still suffer from the insufficiency of scientific knowledge and low throughput to support effective and efficient data generation. Recently, the advancement of deep learning induces expressive methods that can learn the underlying representation and properties of data. Such capability provides new opportunities in figuring out the mutual relationship between the structural patterns and functional properties of the data and leveraging such relationship to generate structural data given the desired properties. This article provides a systematic review of this promising research area, commonly known as controllable deep data generation. Firstly, the potential challenges are raised and preliminaries are provided. Then the controllable deep data generation is formally defined, a taxonomy on various techniques is proposed and the evaluation metrics in this specific domain are summarized. After that, exciting applications of controllable deep data generation are introduced and existing works are experimentally analyzed and compared. Finally, the promising future directions of controllable deep data generation are highlighted and five potential challenges are identified.
Neural network models usually suffer from the challenge of incorporating commonsense knowledge into the open-domain dialogue systems. In this paper, we propose a novel knowledge-aware dialogue generation model (called TransDG), which transfers question representation and knowledge matching abilities from knowledge base question answering (KBQA) task to facilitate the utterance understanding and factual knowledge selection for dialogue generation. In addition, we propose a response guiding attention and a multi-step decoding strategy to steer our model to focus on relevant features for response generation. Experiments on two benchmark datasets demonstrate that our model has robust superiority over compared methods in generating informative and fluent dialogues. Our code is available at //github.com/siat-nlp/TransDG.
We study how to generate captions that are not only accurate in describing an image but also discriminative across different images. The problem is both fundamental and interesting, as most machine-generated captions, despite phenomenal research progresses in the past several years, are expressed in a very monotonic and featureless format. While such captions are normally accurate, they often lack important characteristics in human languages - distinctiveness for each caption and diversity for different images. To address this problem, we propose a novel conditional generative adversarial network for generating diverse captions across images. Instead of estimating the quality of a caption solely on one image, the proposed comparative adversarial learning framework better assesses the quality of captions by comparing a set of captions within the image-caption joint space. By contrasting with human-written captions and image-mismatched captions, the caption generator effectively exploits the inherent characteristics of human languages, and generates more discriminative captions. We show that our proposed network is capable of producing accurate and diverse captions across images.