亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We analyze numerical approximations for axisymmetric two-phase flow in the arbitrary Lagrangian-Eulerian (ALE) framework. We consider a parametric formulation for the evolving fluid interface in terms of a one-dimensional generating curve. For the two-phase Navier-Stokes equations, we introduce both conservative and nonconservative ALE weak formulations in the 2d meridian half-plane. Piecewise linear parametric elements are employed for discretizing the moving interface, which is then coupled to a moving finite element approximation of the bulk equations. This leads to a variety of ALE methods, which enjoy either an equidistribution property or unconditional stability. Furthermore, we adapt these introduced methods with the help of suitable time-weighted discrete normals, so that the volume of the two phases is exactly preserved on the discrete level. Numerical results for rising bubbles and oscillating droplets are presented to show the efficiency and accuracy of these introduced methods.

相關內容

This manuscript is devoted to investigating the conservation laws of incompressible Navier-Stokes equations(NSEs), written in the energy-momentum-angular momentum conserving(EMAC) formulation, after being linearized by the two-level methods. With appropriate correction steps(e.g., Stoke/Newton corrections), we show that the two-level methods, discretized from EMAC NSEs, could preserve momentum, angular momentum, and asymptotically preserve energy. Error estimates and (asymptotic) conservative properties are analyzed and obtained, and numerical experiments are conducted to validate the theoretical results, mainly confirming that the two-level linearized methods indeed possess the property of (almost) retainability on conservation laws. Moreover, experimental error estimates and optimal convergence rates of two newly defined types of pressure approximation in EMAC NSEs are also obtained.

Stochastic differential equation (SDE in short) solvers find numerous applications across various fields. However, in practical simulations, we usually resort to using Ito-Taylor series-based methods like the Euler-Maruyama method. These methods often suffer from the limitation of fixed time scales and recalculations for different Brownian motions, which lead to computational inefficiency, especially in generative and sampling models. To address these issues, we propose a novel approach: learning a mapping between the solution of SDE and corresponding Brownian motion. This mapping exhibits versatility across different scales and requires minimal paths for training. Specifically, we employ the DeepONet method to learn a nonlinear mapping. And we also assess the efficiency of this method through simulations conducted at varying time scales. Additionally, we evaluate its generalization performance to verify its good versatility in different scenarios.

Given any finite set equipped with a probability measure, one may compute its Shannon entropy or information content. The entropy becomes the logarithm of the cardinality of the set when the uniform probability is used. Leinster introduced a notion of Euler characteristic for certain finite categories, also known as magnitude, that can be seen as a categorical generalization of cardinality. This paper aims to connect the two ideas by considering the extension of Shannon entropy to finite categories endowed with probability, in such a way that the magnitude is recovered when a certain choice of "uniform" probability is made.

Numerical analysis for the stochastic Stokes equations is still challenging even though it has been well done for the corresponding deterministic equations. In particular, the pre-existing error estimates of finite element methods for the stochastic Stokes equations { in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm} all suffer from the order reduction with respect to the spatial discretizations. The best convergence result obtained for these fully discrete schemes is only half-order in time and first-order in space, which is not optimal in space in the traditional sense. The objective of this article is to establish strong convergence of $O(\tau^{1/2}+ h^2)$ in the $L^\infty(0, T; L^2(\Omega; L^2))$ norm for approximating the velocity, and strong convergence of $O(\tau^{1/2}+ h)$ in the $L^{\infty}(0, T;L^2(\Omega;L^2))$ norm for approximating the time integral of pressure, where $\tau$ and $h$ denote the temporal step size and spatial mesh size, respectively. The error estimates are of optimal order for the spatial discretization considered in this article (with MINI element), and consistent with the numerical experiments. The analysis is based on the fully discrete Stokes semigroup technique and the corresponding new estimates.

In this work, an efficient and robust isogeometric three-dimensional solid-beam finite element is developed for large deformations and finite rotations with merely displacements as degrees of freedom. The finite strain theory and hyperelastic constitutive models are considered and B-Spline and NURBS are employed for the finite element discretization. Similar to finite elements based on Lagrange polynomials, also NURBS-based formulations are affected by the non-physical phenomena of locking, which constrains the field variables and negatively impacts the solution accuracy and deteriorates convergence behavior. To avoid this problem within the context of a Solid-Beam formulation, the Assumed Natural Strain (ANS) method is applied to alleviate membrane and transversal shear locking and the Enhanced Assumed Strain (EAS) method against Poisson thickness locking. Furthermore, the Mixed Integration Point (MIP) method is employed to make the formulation more efficient and robust. The proposed novel isogeometric solid-beam element is tested on several single-patch and multi-patch benchmark problems, and it is validated against classical solid finite elements and isoparametric solid-beam elements. The results show that the proposed formulation can alleviate the locking effects and significantly improve the performance of the isogeometric solid-beam element. With the developed element, efficient and accurate predictions of mechanical properties of lattice-based structured materials can be achieved. The proposed solid-beam element inherits both the merits of solid elements e.g. flexible boundary conditions and of the beam elements i.e. higher computational efficiency.

Model reduction is the construction of simple yet predictive descriptions of the dynamics of many-body systems in terms of a few relevant variables. A prerequisite to model reduction is the identification of these relevant variables, a task for which no general method exists. Here, we develop a systematic approach based on the information bottleneck to identify the relevant variables, defined as those most predictive of the future. We elucidate analytically the relation between these relevant variables and the eigenfunctions of the transfer operator describing the dynamics. Further, we show that in the limit of high compression, the relevant variables are directly determined by the slowest-decaying eigenfunctions. Our information-based approach indicates when to optimally stop increasing the complexity of the reduced model. Further, it provides a firm foundation to construct interpretable deep learning tools that perform model reduction. We illustrate how these tools work on benchmark dynamical systems and deploy them on uncurated datasets, such as satellite movies of atmospheric flows downloaded directly from YouTube.

In this work we consider the two dimensional instationary Navier-Stokes equations with homogeneous Dirichlet/no-slip boundary conditions. We show error estimates for the fully discrete problem, where a discontinuous Galerkin method in time and inf-sup stable finite elements in space are used. Recently, best approximation type error estimates for the Stokes problem in the $L^\infty(I;L^2(\Omega))$, $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms have been shown. The main result of the present work extends the error estimate in the $L^\infty(I;L^2(\Omega))$ norm to the Navier-Stokes equations, by pursuing an error splitting approach and an appropriate duality argument. In order to discuss the stability of solutions to the discrete primal and dual equations, a specially tailored discrete Gronwall lemma is presented. The techniques developed towards showing the $L^\infty(I;L^2(\Omega))$ error estimate, also allow us to show best approximation type error estimates in the $L^2(I;H^1(\Omega))$ and $L^2(I;L^2(\Omega))$ norms, which complement this work.

We study the iterative methods for large moment systems derived from the linearized Boltzmann equation. By Fourier analysis, it is shown that the direct application of the block symmetric Gauss-Seidel (BSGS) method has slower convergence for smaller Knudsen numbers. Better convergence rates for dense flows are then achieved by coupling the BSGS method with the micro-macro decomposition, which treats the moment equations as a coupled system with a microscopic part and a macroscopic part. Since the macroscopic part contains only a small number of equations, it can be solved accurately during the iteration with a relatively small computational cost, which accelerates the overall iteration. The method is further generalized to the multiscale decomposition which splits the moment system into many subsystems with different orders of magnitude. Both one- and two-dimensional numerical tests are carried out to examine the performances of these methods. Possible issues regarding the efficiency and convergence are discussed in the conclusion.

Normal modal logics extending the logic K4.3 of linear transitive frames are known to lack the Craig interpolation property, except some logics of bounded depth such as S5. We turn this `negative' fact into a research question and pursue a non-uniform approach to Craig interpolation by investigating the following interpolant existence problem: decide whether there exists a Craig interpolant between two given formulas in any fixed logic above K4.3. Using a bisimulation-based characterisation of interpolant existence for descriptive frames, we show that this problem is decidable and coNP-complete for all finitely axiomatisable normal modal logics containing K4.3. It is thus not harder than entailment in these logics, which is in sharp contrast to other recent non-uniform interpolation results. We also extend our approach to Priorean temporal logics (with both past and future modalities) over the standard time flows-the integers, rationals, reals, and finite strict linear orders-none of which is blessed with the Craig interpolation property.

We analyze the anti-symmetric properties of spectral discretization for the one-dimensional Vlasov-Poisson equations. The discretization is based on a spectral expansion in velocity with the symmetrically weighted Hermite basis functions, central finite differencing in space, and an implicit Runge Kutta integrator in time. The proposed discretization preserves the anti-symmetric structure of the advection operator in the Vlasov equation, resulting in a stable numerical method. We apply such discretization to two formulations: the canonical Vlasov-Poisson equations and their continuously transformed square-root representation. The latter preserves the positivity of the particle distribution function. We derive analytically the conservation properties of both formulations, including particle number, momentum, and energy, which are verified numerically on the following benchmark problems: manufactured solution, linear and nonlinear Landau damping, two-stream instability, and bump-on-tail instability.

北京阿比特科技有限公司