亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This manuscript is devoted to investigating the conservation laws of incompressible Navier-Stokes equations(NSEs), written in the energy-momentum-angular momentum conserving(EMAC) formulation, after being linearized by the two-level methods. With appropriate correction steps(e.g., Stoke/Newton corrections), we show that the two-level methods, discretized from EMAC NSEs, could preserve momentum, angular momentum, and asymptotically preserve energy. Error estimates and (asymptotic) conservative properties are analyzed and obtained, and numerical experiments are conducted to validate the theoretical results, mainly confirming that the two-level linearized methods indeed possess the property of (almost) retainability on conservation laws. Moreover, experimental error estimates and optimal convergence rates of two newly defined types of pressure approximation in EMAC NSEs are also obtained.

相關內容

An efficient approximate version of implicit Taylor methods for initial-value problems of systems of ordinary differential equations (ODEs) is introduced. The approach, based on an approximate formulation of Taylor methods, produces a method that requires less evaluations of the function that defines the ODE and its derivatives than the usual version. On the other hand, an efficient numerical solution of the equation that arises from the discretization by means of Newton's method is introduced for an implicit scheme of any order. Numerical experiments illustrate that the resulting algorithm is simpler to implement and has better performance than its exact counterpart.

Partial differential equations (PDEs) have become an essential tool for modeling complex physical systems. Such equations are typically solved numerically via mesh-based methods, such as finite element methods, with solutions over the spatial domain. However, obtaining these solutions are often prohibitively costly, limiting the feasibility of exploring parameters in PDEs. In this paper, we propose an efficient emulator that simultaneously predicts the solutions over the spatial domain, with theoretical justification of its uncertainty quantification. The novelty of the proposed method lies in the incorporation of the mesh node coordinates into the statistical model. In particular, the proposed method segments the mesh nodes into multiple clusters via a Dirichlet process prior and fits Gaussian process models with the same hyperparameters in each of them. Most importantly, by revealing the underlying clustering structures, the proposed method can provide valuable insights into qualitative features of the resulting dynamics that can be used to guide further investigations. Real examples are demonstrated to show that our proposed method has smaller prediction errors than its main competitors, with competitive computation time, and identifies interesting clusters of mesh nodes that possess physical significance, such as satisfying boundary conditions. An R package for the proposed methodology is provided in an open repository.

We provide a Lyapunov convergence analysis for time-inhomogeneous variable coefficient stochastic differential equations (SDEs). Three typical examples include overdamped, irreversible drift, and underdamped Langevin dynamics. We first formula the probability transition equation of Langevin dynamics as a modified gradient flow of the Kullback-Leibler divergence in the probability space with respect to time-dependent optimal transport metrics. This formulation contains both gradient and non-gradient directions depending on a class of time-dependent target distribution. We then select a time-dependent relative Fisher information functional as a Lyapunov functional. We develop a time-dependent Hessian matrix condition, which guarantees the convergence of the probability density function of the SDE. We verify the proposed conditions for several time-inhomogeneous Langevin dynamics. For the overdamped Langevin dynamics, we prove the $O(t^{-1/2})$ convergence in $L^1$ distance for the simulated annealing dynamics with a strongly convex potential function. For the irreversible drift Langevin dynamics, we prove an improved convergence towards the target distribution in an asymptotic regime. We also verify the convergence condition for the underdamped Langevin dynamics. Numerical examples demonstrate the convergence results for the time-dependent Langevin dynamics.

We revisit the question of whether the strong law of large numbers (SLLN) holds uniformly in a rich family of distributions, culminating in a distribution-uniform generalization of the Marcinkiewicz-Zygmund SLLN. These results can be viewed as extensions of Chung's distribution-uniform SLLN to random variables with uniformly integrable $q^\text{th}$ absolute central moments for $0 < q < 2;\ q \neq 1$. Furthermore, we show that uniform integrability of the $q^\text{th}$ moment is both sufficient and necessary for the SLLN to hold uniformly at the Marcinkiewicz-Zygmund rate of $n^{1/q - 1}$. These proofs centrally rely on distribution-uniform analogues of some familiar almost sure convergence results including the Khintchine-Kolmogorov convergence theorem, Kolmogorov's three-series theorem, a stochastic generalization of Kronecker's lemma, and the Borel-Cantelli lemmas. The non-identically distributed case is also considered.

An adaptive method for parabolic partial differential equations that combines sparse wavelet expansions in time with adaptive low-rank approximations in the spatial variables is constructed and analyzed. The method is shown to converge and satisfy similar complexity bounds as existing adaptive low-rank methods for elliptic problems, establishing its suitability for parabolic problems on high-dimensional spatial domains. The construction also yields computable rigorous a posteriori error bounds for such problems. The results are illustrated by numerical experiments.

We propose a physics-constrained convolutional neural network (PC-CNN) to solve two types of inverse problems in partial differential equations (PDEs), which are nonlinear and vary both in space and time. In the first inverse problem, we are given data that is offset by spatially varying systematic error (i.e., the bias, also known as the epistemic uncertainty). The task is to uncover from the biased data the true state, which is the solution of the PDE. In the second inverse problem, we are given sparse information on the solution of a PDE. The task is to reconstruct the solution in space with high-resolution. First, we present the PC-CNN, which constrains the PDE with a simple time-windowing scheme to handle sequential data. Second, we analyse the performance of the PC-CNN for uncovering solutions from biased data. We analyse both linear and nonlinear convection-diffusion equations, and the Navier-Stokes equations, which govern the spatiotemporally chaotic dynamics of turbulent flows. We find that the PC-CNN correctly recovers the true solution for a variety of biases, which are parameterised as non-convex functions. Third, we analyse the performance of the PC-CNN for reconstructing solutions from biased data for the turbulent flow. We reconstruct the spatiotemporal chaotic solution on a high-resolution grid from only 2\% of the information contained in it. For both tasks, we further analyse the Navier-Stokes solutions. We find that the inferred solutions have a physical spectral energy content, whereas traditional methods, such as interpolation, do not. This work opens opportunities for solving inverse problems with partial differential equations.

This paper is concerned with the approximation of solutions to a class of second order non linear abstract differential equations. The finite-dimensional approximate solutions of the given system are built with the aid of the projection operator. We investigate the connection between the approximate solution and exact solution, and the question of convergence. Moreover, we define the Faedo-Galerkin(F-G) approximations and prove the existence and convergence results. The results are obtained by using the theory of cosine functions, Banach fixed point theorem and fractional power of closed linear operators. At last, an example of abstract formulation is provided.

We propose a new numerical domain decomposition method for solving elliptic equations on compact Riemannian manifolds. One advantage of this method is its ability to bypass the need for global triangulations or grids on the manifolds. Additionally, it features a highly parallel iterative scheme. To verify its efficacy, we conduct numerical experiments on some $4$-dimensional manifolds without and with boundary.

High-order Hadamard-form entropy stable multidimensional summation-by-parts discretizations of the Euler and compressible Navier-Stokes equations are considerably more expensive than the standard divergence-form discretization. In search of a more efficient entropy stable scheme, we extend the entropy-split method for implementation on unstructured grids and investigate its properties. The main ingredients of the scheme are Harten's entropy functions, diagonal-$ \mathsf{E} $ summation-by-parts operators with diagonal norm matrix, and entropy conservative simultaneous approximation terms (SATs). We show that the scheme is high-order accurate and entropy conservative on periodic curvilinear unstructured grids for the Euler equations. An entropy stable matrix-type interface dissipation operator is constructed, which can be added to the SATs to obtain an entropy stable semi-discretization. Fully-discrete entropy conservation is achieved using a relaxation Runge-Kutta method. Entropy stable viscous SATs, applicable to both the Hadamard-form and entropy-split schemes, are developed for the compressible Navier-Stokes equations. In the absence of heat fluxes, the entropy-split scheme is entropy stable for the compressible Navier-Stokes equations. Local conservation in the vicinity of discontinuities is enforced using an entropy stable hybrid scheme. Several numerical problems involving both smooth and discontinuous solutions are investigated to support the theoretical results. Computational cost comparison studies suggest that the entropy-split scheme offers substantial efficiency benefits relative to Hadamard-form multidimensional SBP-SAT discretizations.

One of the central quantities of probabilistic seismic risk assessment studies is the fragility curve, which represents the probability of failure of a mechanical structure conditional on a scalar measure derived from the seismic ground motion. Estimating such curves is a difficult task because, for many structures of interest, few data are available and the data are only binary; i.e., they indicate the state of the structure, failure or non-failure. This framework concerns complex equipments such as electrical devices encountered in industrial installations. In order to address this challenging framework a wide range of the methods in the literature rely on a parametric log-normal model. Bayesian approaches allow for efficient learning of the model parameters. However, the choice of the prior distribution has a non-negligible influence on the posterior distribution and, therefore, on any resulting estimate. We propose a thorough study of this parametric Bayesian estimation problem when the data are limited and binary. Using the reference prior theory as a support, we suggest an objective approach for the prior choice. This approach leads to the Jeffreys prior which is explicitly derived for this problem for the first time. The posterior distribution is proven to be proper (i.e., it integrates to unity) with the Jeffreys prior and improper with some classical priors from the literature. The posterior distribution with the Jeffreys prior is also shown to vanish at the boundaries of the parameters domain, so sampling the posterior distribution of the parameters does not produce anomalously small or large values. Therefore, this does not produce degenerate fragility curves such as unit-step functions and the Jeffreys prior leads to robust credibility intervals. The numerical results obtained on two different case studies, including an industrial case, illustrate the theoretical predictions.

北京阿比特科技有限公司