亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We give a procedure for computing group-level $(\epsilon, \delta)$-DP guarantees for DP-SGD, when using Poisson sampling or fixed batch size sampling. Up to discretization errors in the implementation, the DP guarantees computed by this procedure are tight (assuming we release every intermediate iterate).

相關內容

We prove that training neural networks on 1-D data is equivalent to solving a convex Lasso problem with a fixed, explicitly defined dictionary matrix of features. The specific dictionary depends on the activation and depth. We consider 2-layer networks with piecewise linear activations, deep narrow ReLU networks with up to 4 layers, and rectangular and tree networks with sign activation and arbitrary depth. Interestingly in ReLU networks, a fourth layer creates features that represent reflections of training data about themselves. The Lasso representation sheds insight to globally optimal networks and the solution landscape.

Like the notion of computation via (strong) monads serves to classify various flavours of impurity, including exceptions, non-determinism, probability, local and global store, the notion of guardedness classifies well-behavedness of cycles in various settings. In its most general form, the guardedness discipline applies to general symmetric monoidal categories and further specializes to Cartesian and co-Cartesian categories, where it governs guarded recursion and guarded iteration respectively. Here, even more specifically, we deal with the semantics of call-by-value guarded iteration. It was shown by Levy, Power and Thielecke that call-by-value languages can be generally interpreted in Freyd categories, but in order to represent effectful function spaces, such a category must canonically arise from a strong monad. We generalize this fact by showing that representing guarded effectful function spaces calls for certain parametrized monads (in the sense of Uustalu). This provides a description of guardedness as an intrinsic categorical property of programs, complementing the existing description of guardedness as a predicate on a category.

It is well known that any graph admits a crossing-free straight-line drawing in $\mathbb{R}^3$ and that any planar graph admits the same even in $\mathbb{R}^2$. For a graph $G$ and $d \in \{2,3\}$, let $\rho^1_d(G)$ denote the smallest number of lines in $\mathbb{R}^d$ whose union contains a crossing-free straight-line drawing of $G$. For $d=2$, $G$ must be planar. Similarly, let $\rho^2_3(G)$ denote the smallest number of planes in $\mathbb{R}^3$ whose union contains a crossing-free straight-line drawing of $G$. We investigate the complexity of computing these three parameters and obtain the following hardness and algorithmic results. - For $d\in\{2,3\}$, we prove that deciding whether $\rho^1_d(G)\le k$ for a given graph $G$ and integer $k$ is ${\exists\mathbb{R}}$-complete. - Since $\mathrm{NP}\subseteq{\exists\mathbb{R}}$, deciding $\rho^1_d(G)\le k$ is NP-hard for $d\in\{2,3\}$. On the positive side, we show that the problem is fixed-parameter tractable with respect to $k$. - Since ${\exists\mathbb{R}}\subseteq\mathrm{PSPACE}$, both $\rho^1_2(G)$ and $\rho^1_3(G)$ are computable in polynomial space. On the negative side, we show that drawings that are optimal with respect to $\rho^1_2$ or $\rho^1_3$ sometimes require irrational coordinates. - We prove that deciding whether $\rho^2_3(G)\le k$ is NP-hard for any fixed $k \ge 2$. Hence, the problem is not fixed-parameter tractable with respect to $k$ unless $\mathrm{P}=\mathrm{NP}$.

Contact-rich manipulation tasks often exhibit a large sim-to-real gap. For instance, industrial assembly tasks frequently involve tight insertions where the clearance is less than 0.1 mm and can even be negative when dealing with a deformable receptacle. This narrow clearance leads to complex contact dynamics that are difficult to model accurately in simulation, making it challenging to transfer simulation-learned policies to real-world robots. In this paper, we propose a novel framework for robustly learning manipulation skills for real-world tasks using simulated data only. Our framework consists of two main components: the "Force Planner" and the "Gain Tuner". The Force Planner plans both the robot motion and desired contact force, while the Gain Tuner dynamically adjusts the compliance control gains to track the desired contact force during task execution. The key insight is that by dynamically adjusting the robot's compliance control gains during task execution, we can modulate contact force in the new environment, thereby generating trajectories similar to those trained in simulation and narrowing the sim-to-real gap. Experimental results show that our method, trained in simulation on a generic square peg-and-hole task, can generalize to a variety of real-world insertion tasks involving narrow and negative clearances, all without requiring any fine-tuning. Videos are available at //dynamic-compliance.github.io.

This paper intends to apply the sample-average-approximation (SAA) scheme to solve a system of stochastic equations (SSE), which has many applications in a variety of fields. The SAA is an effective paradigm to address risks and uncertainty in stochastic models from the perspective of Monte Carlo principle. Nonetheless, a numerical conflict arises from the sample size of SAA when one has to make a tradeoff between the accuracy of solutions and the computational cost. To alleviate this issue, we incorporate a gradually reinforced SAA scheme into a differentiable homotopy method and develop a gradually reinforced sample-average-approximation (GRSAA) differentiable homotopy method in this paper. By introducing a series of continuously differentiable functions of the homotopy parameter $t$ ranging between zero and one, we establish a differentiable homotopy system, which is able to gradually increase the sample size of SAA as $t$ descends from one to zero. The set of solutions to the homotopy system contains an everywhere smooth path, which starts from an arbitrary point and ends at a solution to the SAA with any desired accuracy. The GRSAA differentiable homotopy method serves as a bridge to link the gradually reinforced SAA scheme and a differentiable homotopy method and retains the nice property of global convergence the homotopy method possesses while greatly reducing the computational cost for attaining a desired solution to the original SSE. Several numerical experiments further confirm the effectiveness and efficiency of the proposed method.

Low-rank matrix completion concerns the problem of estimating unobserved entries in a matrix using a sparse set of observed entries. We consider the non-uniform setting where the observed entries are sampled with highly varying probabilities, potentially with different asymptotic scalings. We show that under structured sampling probabilities, it is often better and sometimes optimal to run estimation algorithms on a smaller submatrix rather than the entire matrix. In particular, we prove error upper bounds customized to each entry, which match the minimax lower bounds under certain conditions. Our bounds characterize the hardness of estimating each entry as a function of the localized sampling probabilities. We provide numerical experiments that confirm our theoretical findings.

We derive and study time-uniform confidence spheres -- confidence sphere sequences (CSSs) -- which contain the mean of random vectors with high probability simultaneously across all sample sizes. Inspired by the original work of Catoni and Giulini, we unify and extend their analysis to cover both the sequential setting and to handle a variety of distributional assumptions. Our results include an empirical-Bernstein CSS for bounded random vectors (resulting in a novel empirical-Bernstein confidence interval with asymptotic width scaling proportionally to the true unknown variance), CSSs for sub-$\psi$ random vectors (which includes sub-gamma, sub-Poisson, and sub-exponential), and CSSs for heavy-tailed random vectors (two moments only). Finally, we provide two CSSs that are robust to contamination by Huber noise. The first is a robust version of our empirical-Bernstein CSS, and the second extends recent work in the univariate setting to heavy-tailed multivariate distributions.

Pre-trained Language Models (PLMs) which are trained on large text corpus via self-supervised learning method, have yielded promising performance on various tasks in Natural Language Processing (NLP). However, though PLMs with huge parameters can effectively possess rich knowledge learned from massive training text and benefit downstream tasks at the fine-tuning stage, they still have some limitations such as poor reasoning ability due to the lack of external knowledge. Research has been dedicated to incorporating knowledge into PLMs to tackle these issues. In this paper, we present a comprehensive review of Knowledge-Enhanced Pre-trained Language Models (KE-PLMs) to provide a clear insight into this thriving field. We introduce appropriate taxonomies respectively for Natural Language Understanding (NLU) and Natural Language Generation (NLG) to highlight these two main tasks of NLP. For NLU, we divide the types of knowledge into four categories: linguistic knowledge, text knowledge, knowledge graph (KG), and rule knowledge. The KE-PLMs for NLG are categorized into KG-based and retrieval-based methods. Finally, we point out some promising future directions of KE-PLMs.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

北京阿比特科技有限公司