This paper presents a configurable version of Extreme Bandwidth Extension Network (EBEN), a Generative Adversarial Network (GAN) designed to improve audio captured with body-conduction microphones. We show that these microphones significantly reduce environmental noise. However, this insensitivity to ambient noise is at the expense of the bandwidth of the voice signal acquired from the wearer of the devices. The obtained captured signals therefore require the use of signal enhancement techniques to recover the full-bandwidth speech. EBEN leverages a configurable multiband decomposition of the raw captured signal. This decomposition allows the data time domain dimensions to be reduced and the full band signal to be better controlled. The multiband representation of the captured signal is processed through a U-Net-like model, which combines feature and adversarial losses to generate an enhanced speech signal. We also benefit from this original representation in the proposed configurable discriminator architecture. The configurable EBEN approach can achieve state-of-the-art enhancement results on synthetic data with a lightweight generator that allows real-time processing.
Image Captioning is one of the vision-language tasks that still interest the research community worldwide in the 2020s. MS-COCO Caption benchmark is commonly used to evaluate the performance of advanced captioning models, although it was published in 2015. Recent captioning models trained on the MS-COCO Caption dataset only have good performance in language patterns of English; they do not have such good performance in contexts captured in Vietnam or fluently caption images using Vietnamese. To contribute to the low-resources research community as in Vietnam, we introduce a novel image captioning dataset in Vietnamese, the Open-domain Vietnamese Image Captioning dataset (UIT-OpenViIC). The introduced dataset includes complex scenes captured in Vietnam and manually annotated by Vietnamese under strict rules and supervision. In this paper, we present in more detail the dataset creation process. From preliminary analysis, we show that our dataset is challenging to recent state-of-the-art (SOTA) Transformer-based baselines, which performed well on the MS COCO dataset. Then, the modest results prove that UIT-OpenViIC has room to grow, which can be one of the standard benchmarks in Vietnamese for the research community to evaluate their captioning models. Furthermore, we present a CAMO approach that effectively enhances the image representation ability by a multi-level encoder output fusion mechanism, which helps improve the quality of generated captions compared to previous captioning models.
Data transfers are essential in today's computing systems as latency and complex memory access patterns are increasingly challenging to manage. Direct memory access engines (DMAEs) are critically needed to transfer data independently of the processing elements, hiding latency and achieving high throughput even for complex access patterns to high-latency memory. With the prevalence of heterogeneous systems, DMAEs must operate efficiently in increasingly diverse environments. This work proposes a modular and highly configurable open-source DMAE architecture called intelligent DMA (iDMA), split into three parts that can be composed and customized independently. The front-end implements the control plane binding to the surrounding system. The mid-end accelerates complex data transfer patterns such as multi-dimensional transfers, scattering, or gathering. The back-end interfaces with the on-chip communication fabric (data plane). We assess the efficiency of iDMA in various instantiations: In high-performance systems, we achieve speedups of up to 15.8x with only 1 % additional area compared to a base system without a DMAE. We achieve an area reduction of 10 % while improving ML inference performance by 23 % in ultra-low-energy edge AI systems over an existing DMAE solution. We provide area, timing, latency, and performance characterization to guide its instantiation in various systems.
Tensor network (TN) is a powerful framework in machine learning, but selecting a good TN model, known as TN structure search (TN-SS), is a challenging and computationally intensive task. The recent approach TNLS~\cite{li2022permutation} showed promising results for this task, however, its computational efficiency is still unaffordable, requiring too many evaluations of the objective function. We propose TnALE, a new algorithm that updates each structure-related variable alternately by local enumeration, \emph{greatly} reducing the number of evaluations compared to TNLS. We theoretically investigate the descent steps for TNLS and TnALE, proving that both algorithms can achieve linear convergence up to a constant if a sufficient reduction of the objective is \emph{reached} in each neighborhood. We also compare the evaluation efficiency of TNLS and TnALE, revealing that $\Omega(2^N)$ evaluations are typically required in TNLS for \emph{reaching} the objective reduction in the neighborhood, while ideally $O(N^2R)$ evaluations are sufficient in TnALE, where $N$ denotes the tensor order and $R$ reflects the \emph{``low-rankness''} of the neighborhood. Experimental results verify that TnALE can find practically good TN-ranks and permutations with vastly fewer evaluations than the state-of-the-art algorithms.
3D object detection plays a pivotal role in many applications, most notably autonomous driving and robotics. These applications are commonly deployed on edge devices to promptly interact with the environment, and often require near real-time response. With limited computation power, it is challenging to execute 3D detection on the edge using highly complex neural networks. Common approaches such as offloading to the cloud induce significant latency overheads due to the large amount of point cloud data during transmission. To resolve the tension between wimpy edge devices and compute-intensive inference workloads, we explore the possibility of empowering fast 2D detection to extrapolate 3D bounding boxes. To this end, we present Moby, a novel system that demonstrates the feasibility and potential of our approach. We design a transformation pipeline for Moby that generates 3D bounding boxes efficiently and accurately based on 2D detection results without running 3D detectors. Further, we devise a frame offloading scheduler that decides when to launch the 3D detector judiciously in the cloud to avoid the errors from accumulating. Extensive evaluations on NVIDIA Jetson TX2 with real-world autonomous driving datasets demonstrate that Moby offers up to 91.9% latency improvement with modest accuracy loss over state of the art.
The usage of drones has tremendously increased in different sectors spanning from military to industrial applications. Despite all the benefits they offer, their misuse can lead to mishaps, and tackling them becomes more challenging particularly at night due to their small size and low visibility conditions. To overcome those limitations and improve the detection accuracy at night, we propose an object detector called Ghost Auto Anchor Network (GAANet) for infrared (IR) images. The detector uses a YOLOv5 core to address challenges in object detection for IR images, such as poor accuracy and a high false alarm rate caused by extended altitudes, poor lighting, and low image resolution. To improve performance, we implemented auto anchor calculation, modified the conventional convolution block to ghost-convolution, adjusted the input channel size, and used the AdamW optimizer. To enhance the precision of multiscale tiny object recognition, we also introduced an additional extra-small object feature extractor and detector. Experimental results in a custom IR dataset with multiple classes (birds, drones, planes, and helicopters) demonstrate that GAANet shows improvement compared to state-of-the-art detectors. In comparison to GhostNet-YOLOv5, GAANet has higher overall mean average precision (mAP@50), recall, and precision around 2.5\%, 2.3\%, and 1.4\%, respectively. The dataset and code for this paper are available as open source at //github.com/ZeeshanKaleem/GhostAutoAnchorNet.
Photoplethysmogram (PPG) signals are easily contaminated by motion artifacts in real-world settings, despite their widespread use in Internet-of-Things (IoT) based wearable and smart health devices for cardiovascular health monitoring. This study proposed a lightweight deep neural network, called Tiny-PPG, for accurate and real-time PPG artifact segmentation on IoT edge devices. The model was trained and tested on a public dataset, PPG DaLiA, which featured complex artifacts with diverse lengths and morphologies during various daily activities of 15 subjects using a watch-type device (Empatica E4). The model structure, training method and loss function were specifically designed to balance detection accuracy and speed for real-time PPG artifact detection in resource-constrained embedded devices. To optimize the model size and capability in multi-scale feature representation, the model employed deep separable convolution and atrous spatial pyramid pooling modules, respectively. Additionally, the contrastive loss was also utilized to further optimize the feature embeddings. With additional model pruning, Tiny-PPG achieved state-of-the-art detection accuracy of 87.8% while only having 19,726 model parameters (0.15 megabytes), and was successfully deployed on an STM32 embedded system for real-time PPG artifact detection. Therefore, this study provides an effective solution for resource-constraint IoT smart health devices in PPG artifact detection.
Achieving resource efficiency while preserving end-user experience is non-trivial for cloud application operators. As cloud applications progressively adopt microservices, resource managers are faced with two distinct levels of system behavior: the end-to-end application latency and per-service resource usage. Translation between these two levels, however, is challenging because user requests traverse heterogeneous services that collectively (but unevenly) contribute to the end-to-end latency. This paper presents Autothrottle, a bi-level learning-assisted resource management framework for SLO-targeted microservices. It architecturally decouples mechanisms of application SLO feedback and service resource control, and bridges them with the notion of performance targets. This decoupling enables targeted control policies for these two mechanisms, where we combine lightweight heuristics and learning techniques. We evaluate Autothrottle on three microservice applications, with workload traces from production scenarios. Results show its superior CPU resource saving, up to 26.21% over the best-performing baseline, and up to 93.84% over all baselines.
Noisy Intermediate-Scale Quantum Computing (NISQ) has dominated headlines in recent years, with the longer-term vision of Fault-Tolerant Quantum Computation (FTQC) offering significant potential albeit at currently intractable resource costs and quantum error correction (QEC) overheads. For problems of interest, FTQC will require millions of physical qubits with long coherence times, high-fidelity gates, and compact sizes to surpass classical systems. Just as heterogeneous specialization has offered scaling benefits in classical computing, it is likewise gaining interest in FTQC. However, systematic use of heterogeneity in either hardware or software elements of FTQC systems remains a serious challenge due to the vast design space and variable physical constraints. This paper meets the challenge of making heterogeneous FTQC design practical by introducing HetArch, a toolbox for designing heterogeneous quantum systems, and using it to explore heterogeneous design scenarios. Using a hierarchical approach, we successively break quantum algorithms into smaller operations (akin to classical application kernels), thus greatly simplifying the design space and resulting tradeoffs. Specializing to superconducting systems, we then design optimized heterogeneous hardware composed of varied superconducting devices, abstracting physical constraints into design rules that enable devices to be assembled into standard cells optimized for specific operations. Finally, we provide a heterogeneous design space exploration framework which reduces the simulation burden by a factor of 10^4 or more and allows us to characterize optimal design points. We use these techniques to design superconducting quantum modules for entanglement distillation, error correction, and code teleportation, reducing error rates by 2.6x, 10.7x, and 3.0x compared to homogeneous systems.
Behaviors of the synthetic characters in current military simulations are limited since they are generally generated by rule-based and reactive computational models with minimal intelligence. Such computational models cannot adapt to reflect the experience of the characters, resulting in brittle intelligence for even the most effective behavior models devised via costly and labor-intensive processes. Observation-based behavior model adaptation that leverages machine learning and the experience of synthetic entities in combination with appropriate prior knowledge can address the issues in the existing computational behavior models to create a better training experience in military training simulations. In this paper, we introduce a framework that aims to create autonomous synthetic characters that can perform coherent sequences of believable behavior while being aware of human trainees and their needs within a training simulation. This framework brings together three mutually complementary components. The first component is a Unity-based simulation environment - Rapid Integration and Development Environment (RIDE) - supporting One World Terrain (OWT) models and capable of running and supporting machine learning experiments. The second is Shiva, a novel multi-agent reinforcement and imitation learning framework that can interface with a variety of simulation environments, and that can additionally utilize a variety of learning algorithms. The final component is the Sigma Cognitive Architecture that will augment the behavior models with symbolic and probabilistic reasoning capabilities. We have successfully created proof-of-concept behavior models leveraging this framework on realistic terrain as an essential step towards bringing machine learning into military simulations.
State-of-the-art Convolutional Neural Network (CNN) benefits a lot from multi-task learning (MTL), which learns multiple related tasks simultaneously to obtain shared or mutually related representations for different tasks. The most widely-used MTL CNN structure is based on an empirical or heuristic split on a specific layer (e.g., the last convolutional layer) to minimize different task-specific losses. However, this heuristic sharing/splitting strategy may be harmful to the final performance of one or multiple tasks. In this paper, we propose a novel CNN structure for MTL, which enables automatic feature fusing at every layer. Specifically, we first concatenate features from different tasks according to their channel dimension, and then formulate the feature fusing problem as discriminative dimensionality reduction. We show that this discriminative dimensionality reduction can be done by 1x1 Convolution, Batch Normalization, and Weight Decay in one CNN, which we refer to as Neural Discriminative Dimensionality Reduction (NDDR). We perform ablation analysis in details for different configurations in training the network. The experiments carried out on different network structures and different task sets demonstrate the promising performance and desirable generalizability of our proposed method.