亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the task of computing functions $f: \mathbb{N}^k\to \mathbb{N}$, where $ \mathbb{N}$ is the set of natural numbers, by finite teams of agents modelled as deterministic finite automata. The computation is carried out in a distributed way, using the {\em discrete half-line}, which is the infinite graph with one node of degree 1 (called the root) and infinitely many nodes of degree 2. The node at distance $j$ from the root represents the integer $j$. We say that a team $\mathcal{A}^f$ of automata computes a function $f$, if in the beginning of the computation all automata from $\mathcal{A}^f$ are located at the arguments $x_1,\dots,x_k$ of the function $f$, in groups $\mathcal{A}^f _j$ at $x_j$, and at the end, all automata of the team gather at $f(x_1,\dots,x_k)$ and transit to a special state $STOP$. At each step of the computation, an automaton $a$ can ``see'' states of all automata colocated at the same node: the set of these states forms an input of $a$. Our main result shows that, for every primitive recursive function, there exists a finite team of automata that computes this function. We prove this by showing that basic primitive recursive functions can be computed by teams of automata, and that functions resulting from the operations of composition and of primitive recursion can be computed by teams of automata, provided that the ingredient functions of these operations can be computed by teams of automata. We also observe that cooperation between automata is necessary: even some very simple functions $f: \mathbb{N}\to \mathbb{N}$ cannot be computed by a single automaton.

相關內容

Given a matrix $\mathbf{A} \in \mathbb{R}^{k \times n}$, a partitioning of $[k]$ into groups $S_1,\dots,S_m$, an outer norm $p$, and a collection of inner norms such that either $p \ge 1$ and $p_1,\dots,p_m \ge 2$ or $p_1=\dots=p_m=p \ge 1/\log n$, we prove that there is a sparse weight vector $\mathbf{\beta} \in \mathbb{R}^{m}$ such that $\sum_{i=1}^m \beta_i \cdot \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p \approx_{1\pm\varepsilon} \sum_{i=1}^m \|\mathbf{A}_{S_i}\mathbf{x}\|_{p_i}^p$, where the number of nonzero entries of $\mathbf{\beta}$ is at most $O_{p,p_i}(\varepsilon^{-2}n^{\max(1,p/2)}(\log n)^2(\log(n/\varepsilon)))$. When $p_1\dots,p_m \ge 2$, this weight vector arises from an importance sampling procedure based on the block Lewis weights, a recently proposed generalization of Lewis weights. Additionally, we prove that there exist efficient algorithms to find the sparse weight vector $\mathbf{\beta}$ in several important regimes of $p$ and $p_1,\dots,p_m$. Our main technical contribution is a substantial generalization of the change-of-measure method that Bourgain, Lindenstrauss, and Milman used to obtain the analogous result when every group has size $1$. Our generalization allows one to analyze change of measures beyond those implied by D. Lewis's original construction, including the measure implied by the block Lewis weights and natural approximations of this measure.

In this paper, we employ general results on the value distributions of perfect nonlinear functions from $\mathbb{F}_{p^m}$ to $\mathbb{F}_p$ together with a specific group action to give a unified approach to determining the weight distributions of two classes of linear codes over $\mathbb{F}_p$ constructed from perfect nonlinear functions, where $p$ is an odd prime number and $m\in\mathbb{N}_+$.

The circuit class $\mathsf{QAC}^0$ was introduced by Moore (1999) as a model for constant depth quantum circuits where the gate set includes many-qubit Toffoli gates. Proving lower bounds against such circuits is a longstanding challenge in quantum circuit complexity; in particular, showing that polynomial-size $\mathsf{QAC}^0$ cannot compute the parity function has remained an open question for over 20 years. In this work, we identify a notion of the \emph{Pauli spectrum} of $\mathsf{QAC}^0$ circuits, which can be viewed as the quantum analogue of the Fourier spectrum of classical $\mathsf{AC}^0$ circuits. We conjecture that the Pauli spectrum of $\mathsf{QAC}^0$ circuits satisfies \emph{low-degree concentration}, in analogy to the famous Linial, Nisan, Mansour theorem on the low-degree Fourier concentration of $\mathsf{AC}^0$ circuits. If true, this conjecture immediately implies that polynomial-size $\mathsf{QAC}^0$ circuits cannot compute parity. We prove this conjecture for the class of depth-$d$, polynomial-size $\mathsf{QAC}^0$ circuits with at most $n^{O(1/d)}$ auxiliary qubits. We obtain new circuit lower bounds and learning results as applications: this class of circuits cannot correctly compute -- the $n$-bit parity function on more than $(\frac{1}{2} + 2^{-\Omega(n^{1/d})})$-fraction of inputs, and -- the $n$-bit majority function on more than $(1 - 1/\mathrm{poly}(n))$-fraction of inputs. \end{itemize} Additionally we show that this class of $\mathsf{QAC}^0$ circuits with limited auxiliary qubits can be learned with quasipolynomial sample complexity, giving the first learning result for $\mathsf{QAC}^0$ circuits. More broadly, our results add evidence that ``Pauli-analytic'' techniques can be a powerful tool in studying quantum circuits.

We show that the problem of whether a query is equivalent to a query of tree-width $k$ is decidable, for the class of Unions of Conjunctive Regular Path Queries with two-way navigation (UC2RPQs). A previous result by Barcel\'o, Romero, and Vardi [SIAM Journal on Computing, 2016] has shown decidability for the case $k=1$, and here we extend this result showing that decidability in fact holds for any arbitrary $k\geq 1$. The algorithm is in 2ExpSpace, but for the restricted but practically relevant case where all regular expressions of the query are of the form $a^*$ or $(a_1 + \dotsb + a_n)$ we show that the complexity of the problem drops to $\Pi^P_2$. We also investigate the related problem of approximating a UC2RPQ by queries of small tree-width. We exhibit an algorithm which, for any fixed number $k$, builds the maximal under-approximation of tree-width $k$ of a UC2RPQ. The maximal under-approximation of tree-width $k$ of a query $q$ is a query $q'$ of tree-width $k$ which is contained in $q$ in a maximal and unique way, that is, such that for every query $q''$ of tree-width $k$, if $q''$ is contained in $q$ then $q''$ is also contained in $q'$. Our approach is shown to be robust, in the sense that it allows also to test equivalence with queries of a given path-width, it also covers the previously known result for $k=1$, and it allows to test for equivalence of whether a (one-way) UCRPQ is equivalent to a UCRPQ of a given tree-width (or path-width).

Let $\Omega = [0,1]^d$ be the unit cube in $\mathbb{R}^d$. We study the problem of how efficiently, in terms of the number of parameters, deep neural networks with the ReLU activation function can approximate functions in the Sobolev spaces $W^s(L_q(\Omega))$ and Besov spaces $B^s_r(L_q(\Omega))$, with error measured in the $L_p(\Omega)$ norm. This problem is important when studying the application of neural networks in a variety of fields, including scientific computing and signal processing, and has previously been solved only when $p=q=\infty$. Our contribution is to provide a complete solution for all $1\leq p,q\leq \infty$ and $s > 0$ for which the corresponding Sobolev or Besov space compactly embeds into $L_p$. The key technical tool is a novel bit-extraction technique which gives an optimal encoding of sparse vectors. This enables us to obtain sharp upper bounds in the non-linear regime where $p > q$. We also provide a novel method for deriving $L_p$-approximation lower bounds based upon VC-dimension when $p < \infty$. Our results show that very deep ReLU networks significantly outperform classical methods of approximation in terms of the number of parameters, but that this comes at the cost of parameters which are not encodable.

The orthogonality dimension of a graph $G$ over $\mathbb{R}$ is the smallest integer $k$ for which one can assign a nonzero $k$-dimensional real vector to each vertex of $G$, such that every two adjacent vertices receive orthogonal vectors. We prove that for every sufficiently large integer $k$, it is $\mathsf{NP}$-hard to decide whether the orthogonality dimension of a given graph over $\mathbb{R}$ is at most $k$ or at least $2^{(1-o(1)) \cdot k/2}$. We further prove such hardness results for the orthogonality dimension over finite fields as well as for the closely related minrank parameter, which is motivated by the index coding problem in information theory. This in particular implies that it is $\mathsf{NP}$-hard to approximate these graph quantities to within any constant factor. Previously, the hardness of approximation was known to hold either assuming certain variants of the Unique Games Conjecture or for approximation factors smaller than $3/2$. The proofs involve the concept of line digraphs and bounds on their orthogonality dimension and on the minrank of their complement.

We find a succinct expression for computing the sequence $x_t = a_t x_{t-1} + b_t$ in parallel with two prefix sums, given $t = (1, 2, \dots, n)$, $a_t \in \mathbb{R}^n$, $b_t \in \mathbb{R}^n$, and initial value $x_0 \in \mathbb{R}$. On $n$ parallel processors, the computation of $n$ elements incurs $\mathcal{O}(\log n)$ time and $\mathcal{O}(n)$ space. Sequences of this form are ubiquitous in science and engineering, making efficient parallelization useful for a vast number of applications. We implement our expression in software, test it on parallel hardware, and verify that it executes faster than sequential computation by a factor of $\frac{n}{\log n}$.

We consider the following general model of a sorting procedure: we fix a hereditary permutation class $\mathcal{C}$, which corresponds to the operations that the procedure is allowed to perform in a single step. The input of sorting is a permutation $\pi$ of the set $[n]=\{1,2,\dotsc,n\}$, i.e., a sequence where each element of $[n]$ appears once. In every step, the sorting procedure picks a permutation $\sigma$ of length $n$ from $\mathcal{C}$, and rearranges the current permutation of numbers by composing it with $\sigma$. The goal is to transform the input $\pi$ into the sorted sequence $1,2,\dotsc,n$ in as few steps as possible. This model of sorting captures not only classical sorting algorithms, like insertion sort or bubble sort, but also sorting by series of devices, like stacks or parallel queues, as well as sorting by block operations commonly considered, e.g., in the context of genome rearrangement. Our goal is to describe the possible asymptotic behavior of the worst-case number of steps needed when sorting with a hereditary permutation class. As the main result, we show that any hereditary permutation class $\mathcal{C}$ falls into one of five distinct categories. Disregarding the classes that cannot sort all permutations, the number of steps needed to sort any permutation of $[n]$ with $\mathcal{C}$ is either $\Theta(n^2)$, a function between $O(n)$ and $\Omega(\sqrt{n})$, a function betwee $O(\log^2 n)$ and $\Omega(\log n), or $1$, and for each of these cases we provide a structural characterization of the corresponding hereditary classes.

We study the approximability of general convex sets in $\mathbb{R}^n$ by intersections of halfspaces, where the approximation quality is measured with respect to the standard Gaussian distribution $N(0,I_n)$ and the complexity of an approximation is the number of halfspaces used. While a large body of research has considered the approximation of convex sets by intersections of halfspaces under distance metrics such as the Lebesgue measure and Hausdorff distance, prior to our work there has not been a systematic study of convex approximation under the Gaussian distribution. We establish a range of upper and lower bounds, both for general convex sets and for specific natural convex sets that are of particular interest. Our results demonstrate that the landscape of approximation is intriguingly different under the Gaussian distribution versus previously studied distance measures. For example, we show that $2^{\Theta(\sqrt{n})}$ halfspaces are both necessary and sufficient to approximate the origin-centered $\ell_2$ ball of Gaussian volume 1/2 to any constant accuracy, and that for $1 \leq p < 2$, the origin-centered $\ell_p$ ball of Gaussian volume 1/2 can be approximated to any constant accuracy as an intersection of $2^{\widetilde{O}(n^{3/4})}$ many halfspaces. These bounds are quite different from known approximation results under more commonly studied distance measures. Our results are proved using techniques from many different areas. These include classical results on convex polyhedral approximation, Cram\'er-type bounds on large deviations from probability theory, and -- perhaps surprisingly -- a range of topics from computational complexity, including computational learning theory, unconditional pseudorandomness, and the study of influences and noise sensitivity in the analysis of Boolean functions.

We investigate the linear chromatic number $\chi_{\text{lin}}(G(n,p))$ of the binomial random graph $G(n,p)$ on $n$ vertices in which each edge appears independently with probability $p=p(n)$. For dense random graphs ($np \to \infty$ as $n \to \infty$), we show that asymptotically almost surely $\chi_{\text{lin}}(G(n,p)) \ge n (1 - O( (np)^{-1/2} ) ) = n(1-o(1))$. Understanding the order of the linear chromatic number for subcritical random graphs ($np < 1$) and critical ones ($np=1$) is relatively easy. However, supercritical sparse random graphs ($np = c$ for some constant $c > 1$) remain to be investigated.

北京阿比特科技有限公司