亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The ability to verifiably retrieve transaction or state data stored off-chain is crucial to blockchain scaling techniques such as rollups or sharding. We formalize the problem and design a storage- and communication-efficient protocol using linear erasure-correcting codes and homomorphic vector commitments. Motivated by application requirements for rollups, our solution departs from earlier Verifiable Information Dispersal schemes in that we do not require comprehensive termination properties or retrievability from any but only from some known sufficiently large set of storage nodes. Compared to Data Availability Oracles, under no circumstance do we fall back to returning empty blocks. Distributing a file of 28.8 MB among 900 storage nodes (up to 300 of which may be adversarial) requires in total approx. 95 MB of communication and storage and approx. 30 seconds of cryptographic computation on a single-threaded consumer-grade laptop computer. Our solution requires no modification to on-chain contracts of Validium rollups such as StarkWare's StarkEx. Additionally, it provides privacy of the dispersed data against honest-but-curious storage nodes.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · INFORMS · Extensibility · 在線 · 凸函數 ·
2022 年 1 月 28 日

We introduce an online convex optimization algorithm using projected subgradient descent with optimal adaptive learning rates, with sequential and efficient first-order updates. Our method provides a subgradient adaptive minimax optimal dynamic regret guarantee for a sequence of general convex functions with no known additional properties such as strong-convexity, smoothness, exp-concavity or even Lipschitz-continuity. The guarantee is against any comparator decision sequence with bounded "complexity", defined by the cumulative distance traveled via changes between successive decisions. We show optimality by generating a lower bound of the worst-case second-order dynamic regret, which incorporates actual subgradient norms and matches with our guarantees within a constant factor. We also derive the extension for independent learning in each decision coordinate separately. Additionally, we demonstrate how to best preserve our guarantees when the bound on total successive changes in the dynamic comparator sequence grows in time or the feedback regarding such bound arrives partially with time, both in a truly online manner. Then, as a major contribution, we examine the scenario when we receive no information regarding the successive changes, but instead, by a unique re-purposing of the expert mixture framework with novel additions, we eliminate the need of such information in, again, a truly online manner. Moreover, we show the ability to compete against all dynamic comparator sequences simultaneously (universally) with minimax optimality, where the guarantees depend on the "complexity" of each comparator separately. We also discuss potential modifications to our approach which addresses further complexity reductions for time, computation, memory, and we also further the universal competitiveness via guarantees taking into account concentrations of a comparator sequence in the decision set.

Federated Learning (FL) has shown great potential as a privacy-preserving solution to learning from decentralized data that are only accessible to end devices (i.e., clients). In many scenarios, however, a large proportion of the clients are probably in possession of low-quality data that are biased, noisy or even irrelevant. As a result, they could significantly slow down the convergence of the global model we aim to build and also compromise its quality. In light of this, we propose FedProf, a novel algorithm for optimizing FL under such circumstances without breaching data privacy. The key of our approach is a distributional representation profiling and matching scheme that uses the global model to dynamically profile data representations and allows for low-cost, lightweight representation matching. Based on the scheme we adaptively score each client and adjust its participation probability so as to mitigate the impact of low-value clients on the training process. We have conducted extensive experiments on public datasets using various FL settings. The results show that the selective behaviour of our algorithm leads to a significant reduction in the number of communication rounds and the amount of time (up to 2.4x speedup) for the global model to converge and also provides accuracy gain.

We study properties of secret sharing schemes, where a random secret value is transformed into shares distributed among several participants in such a way that only the qualified groups of participants can recover the secret value. We improve the lower bounds on the sizes of shares for several specific problems of secret sharing. To this end, we use the method of non-Shannon type information inequalities going back to Z. Zhang and R.W. Yeung. We extend and employ the linear programming technique that allows to apply new information inequalities indirectly, without even writing them down explicitly. To reduce the complexity of the problems of linear programming involved in the bounds we use extensively symmetry considerations.

We consider the allocation of $m$ balls into $n$ bins with incomplete information. In the classical Two-Choice process a ball first queries the load of two randomly chosen bins and is then placed in the least loaded bin. In our setting, each ball also samples two random bins but can only estimate a bin's load by sending binary queries of the form "Is the load at least the median?" or "Is the load at least 100?". For the lightly loaded case $m=O(n)$, Feldheim and Gurel-Gurevich (2021) showed that with one query it is possible to achieve a maximum load of $O(\sqrt{\log n/\log \log n})$, and posed the question whether a maximum load of $m/n+O(\sqrt{\log n/\log \log n})$ is possible for any $m = \Omega(n)$. In this work, we resolve this open problem by proving a lower bound of $m/n+\Omega( \sqrt{\log n})$ for a fixed $m=\Theta(n \sqrt{\log n})$, and a lower bound of $m/n+\Omega(\log n/\log \log n)$ for some $m$ depending on the used strategy. We complement this negative result by proving a positive result for multiple queries. In particular, we show that with only two binary queries per chosen bin, there is an oblivious strategy which ensures a maximum load of $m/n+O(\sqrt{\log n})$ for any $m \geq 1$. Further, for any number of $k = O(\log \log n)$ binary queries, the upper bound on the maximum load improves to $m/n + O(k(\log n)^{1/k})$ for any $m \geq 1$. Further, this result for $k$ queries implies (i) new bounds for the $(1+\beta)$-process introduced by Peres et al (2015), (ii) new bounds for the graphical balanced allocation process on dense expander graphs, and (iii) the bound of $m/n+O(\log \log n)$ on the maximum load achieved by the Two-Choice process, including the heavily loaded case $m=\Omega(n)$ derived by Berenbrink et al. (2006). One novel aspect of our proofs is the use of multiple super-exponential potential functions, which might be of use in future work.

Sampling methods (e.g., node-wise, layer-wise, or subgraph) has become an indispensable strategy to speed up training large-scale Graph Neural Networks (GNNs). However, existing sampling methods are mostly based on the graph structural information and ignore the dynamicity of optimization, which leads to high variance in estimating the stochastic gradients. The high variance issue can be very pronounced in extremely large graphs, where it results in slow convergence and poor generalization. In this paper, we theoretically analyze the variance of sampling methods and show that, due to the composite structure of empirical risk, the variance of any sampling method can be decomposed into \textit{embedding approximation variance} in the forward stage and \textit{stochastic gradient variance} in the backward stage that necessities mitigating both types of variance to obtain faster convergence rate. We propose a decoupled variance reduction strategy that employs (approximate) gradient information to adaptively sample nodes with minimal variance, and explicitly reduces the variance introduced by embedding approximation. We show theoretically and empirically that the proposed method, even with smaller mini-batch sizes, enjoys a faster convergence rate and entails a better generalization compared to the existing methods.

Retrieving object instances among cluttered scenes efficiently requires compact yet comprehensive regional image representations. Intuitively, object semantics can help build the index that focuses on the most relevant regions. However, due to the lack of bounding-box datasets for objects of interest among retrieval benchmarks, most recent work on regional representations has focused on either uniform or class-agnostic region selection. In this paper, we first fill the void by providing a new dataset of landmark bounding boxes, based on the Google Landmarks dataset, that includes $86k$ images with manually curated boxes from $15k$ unique landmarks. Then, we demonstrate how a trained landmark detector, using our new dataset, can be leveraged to index image regions and improve retrieval accuracy while being much more efficient than existing regional methods. In addition, we introduce a novel regional aggregated selective match kernel (R-ASMK) to effectively combine information from detected regions into an improved holistic image representation. R-ASMK boosts image retrieval accuracy substantially with no dimensionality increase, while even outperforming systems that index image regions independently. Our complete image retrieval system improves upon the previous state-of-the-art by significant margins on the Revisited Oxford and Paris datasets. Code and data available at the project webpage: //github.com/tensorflow/models/tree/master/research/delf.

Inferencing with network data necessitates the mapping of its nodes into a vector space, where the relationships are preserved. However, with multi-layered networks, where multiple types of relationships exist for the same set of nodes, it is crucial to exploit the information shared between layers, in addition to the distinct aspects of each layer. In this paper, we propose a novel approach that first obtains node embeddings in all layers jointly via DeepWalk on a \textit{supra} graph, which allows interactions between layers, and then fine-tunes the embeddings to encourage cohesive structure in the latent space. With empirical studies in node classification, link prediction and multi-layered community detection, we show that the proposed approach outperforms existing single- and multi-layered network embedding algorithms on several benchmarks. In addition to effectively scaling to a large number of layers (tested up to $37$), our approach consistently produces highly modular community structure, even when compared to methods that directly optimize for the modularity function.

Image-level feature descriptors obtained from convolutional neural networks have shown powerful representation capabilities for image retrieval. In this paper, we present an unsupervised method to aggregate deep convolutional features into compact yet discriminative image vectors by simulating the dynamics of heat diffusion. A distinctive problem in image retrieval is that repetitive or bursty features tend to dominate feature representations, leading to less than ideal matches. We show that by considering each deep feature as a heat source, our method is able to avoiding over-representation of bursty features. We additionally provide a practical solution for the proposed aggregation method, which is further demonstrated in our experimental evaluation. Finally, we extensively evaluate the proposed approach with pre-trained and fine-tuned deep networks on common public benchmarks, and show superior performance compared to previous work.

Verifiability is one of the core editing principles in Wikipedia, where editors are encouraged to provide citations for the added statements. Statements can be any arbitrary piece of text, ranging from a sentence up to a paragraph. However, in many cases, citations are either outdated, missing, or link to non-existing references (e.g. dead URL, moved content etc.). In total, 20\% of the cases such citations refer to news articles and represent the second most cited source. Even in cases where citations are provided, there are no explicit indicators for the span of a citation for a given piece of text. In addition to issues related with the verifiability principle, many Wikipedia entity pages are incomplete, with relevant information that is already available in online news sources missing. Even for the already existing citations, there is often a delay between the news publication time and the reference time. In this thesis, we address the aforementioned issues and propose automated approaches that enforce the verifiability principle in Wikipedia, and suggest relevant and missing news references for further enriching Wikipedia entity pages.

Owing to the recent advances in "Big Data" modeling and prediction tasks, variational Bayesian estimation has gained popularity due to their ability to provide exact solutions to approximate posteriors. One key technique for approximate inference is stochastic variational inference (SVI). SVI poses variational inference as a stochastic optimization problem and solves it iteratively using noisy gradient estimates. It aims to handle massive data for predictive and classification tasks by applying complex Bayesian models that have observed as well as latent variables. This paper aims to decentralize it allowing parallel computation, secure learning and robustness benefits. We use Alternating Direction Method of Multipliers in a top-down setting to develop a distributed SVI algorithm such that independent learners running inference algorithms only require sharing the estimated model parameters instead of their private datasets. Our work extends the distributed SVI-ADMM algorithm that we first propose, to an ADMM-based networked SVI algorithm in which not only are the learners working distributively but they share information according to rules of a graph by which they form a network. This kind of work lies under the umbrella of `deep learning over networks' and we verify our algorithm for a topic-modeling problem for corpus of Wikipedia articles. We illustrate the results on latent Dirichlet allocation (LDA) topic model in large document classification, compare performance with the centralized algorithm, and use numerical experiments to corroborate the analytical results.

北京阿比特科技有限公司