亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The success of matrix factorizations such as the singular value decomposition (SVD) has motivated the search for even more factorizations. We catalog 53 matrix factorizations, most of which we believe to be new. Our systematic approach, inspired by the generalized Cartan decomposition of Lie theory, also encompasses known factorizations such as the SVD, the symmetric eigendecomposition, the CS decomposition, the hyperbolic SVD, structured SVDs, the Takagi factorization, and others thereby covering familiar matrix factorizations as well as ones that were waiting to be discovered. We suggest that Lie theory has one way or another been lurking hidden in the foundations of the very successful field of matrix computations with applications routinely used in so many areas of computation. In this paper, we investigate consequences of the Cartan decomposition and the little known generalized Cartan decomposition for matrix factorizations. We believe that these factorizations once properly identified can lead to further work on algorithmic computations and applications.

相關內容

奇異值分解(Singular Value Decomposition)是線性代數中一種重要的矩陣分解,奇異值分解則是特征分解在任意矩陣上的推廣。在信號處理、統計學等領域有重要應用。

A natural representation of random graphs is the random measure. The collection of product random measures, their transformations, and non-negative test functions forms a general representation of the collection of non-negative weighted random graphs, directed or undirected, labeled or unlabeled, where (i) the composition of the test function and transformation is a non-negative edge weight function, (ii) the mean measures encode edge density/weight and vertex degree density/weight, and (iii) the mean edge weight, when square-integrable, encodes generalized spectral and Sobol representations. We develop a number of properties of these random graphs, and we give simple examples of some of their possible applications.

In this paper, we propose a depth-first search (DFS) algorithm for searching maximum matchings in general graphs. Unlike blossom shrinking algorithms, which store all possible alternative alternating paths in the super-vertices shrunk from blossoms, the newly proposed algorithm does not involve blossom shrinking. The basic idea is to deflect the alternating path when facing blossoms. The algorithm maintains detour information in an auxiliary stack to minimize the redundant data structures. A benefit of our technique is to avoid spending time on shrinking and expanding blossoms. This DFS algorithm can determine a maximum matching of a general graph with $m$ edges and $n$ vertices in $O(mn)$ time with space complexity $O(n)$.

Covariance estimation for matrix-valued data has received an increasing interest in applications. Unlike previous works that rely heavily on matrix normal distribution assumption and the requirement of fixed matrix size, we propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data under a separability condition and a bandable covariance structure. Under these conditions, the original covariance matrix is decomposed into a Kronecker product of two bandable small covariance matrices representing the variability over row and column directions. We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation. The convergence rates of the proposed estimators are established, and the derived minimax lower bound shows our proposed estimator is rate-optimal under certain divergence regimes of matrix size. We further introduce a class of robust covariance estimators and provide theoretical guarantees to deal with heavy-tailed data. We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.

SVD (singular value decomposition) is one of the basic tools of machine learning, allowing to optimize basis for a given matrix. However, sometimes we have a set of matrices $\{A_k\}_k$ instead, and would like to optimize a single common basis for them: find orthogonal matrices $U$, $V$, such that $\{U^T A_k V\}$ set of matrices is somehow simpler. For example DCT-II is orthonormal basis of functions commonly used in image/video compression - as discussed here, this kind of basis can be quickly automatically optimized for a given dataset. While also discussed gradient descent optimization might be computationally costly, there is proposed CSVD (common SVD): fast general approach based on SVD. Specifically, we choose $U$ as built of eigenvectors of $\sum_i (w_k)^q (A_k A_k^T)^p$ and $V$ of $\sum_k (w_k)^q (A_k^T A_k)^p$, where $w_k$ are their weights, $p,q>0$ are some chosen powers e.g. 1/2, optionally with normalization e.g. $A \to A - rc^T$ where $r_i=\sum_j A_{ij}, c_j =\sum_i A_{ij}$.

Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.

We consider networks of small, autonomous devices that communicate with each other wirelessly. Minimizing energy usage is an important consideration in designing algorithms for such networks, as battery life is a crucial and limited resource. Working in a model where both sending and listening for messages deplete energy, we consider the problem of finding a maximal matching of the nodes in a radio network of arbitrary and unknown topology. We present a distributed randomized algorithm that produces, with high probability, a maximal matching. The maximum energy cost per node is $O(\log^2 n)$, where $n$ is the size of the network. The total latency of our algorithm is $O(n \log n)$ time steps. We observe that there exist families of network topologies for which both of these bounds are simultaneously optimal up to polylog factors, so any significant improvement will require additional assumptions about the network topology. We also consider the related problem of assigning, for each node in the network, a neighbor to back up its data in case of node failure. Here, a key goal is to minimize the maximum load, defined as the number of nodes assigned to a single node. We present a decentralized low-energy algorithm that finds a neighbor assignment whose maximum load is at most a polylog($n$) factor bigger that the optimum.

For a given nonnegative matrix $A=(A_{ij})$, the matrix scaling problem asks whether $A$ can be scaled to a doubly stochastic matrix $XAY$ for some positive diagonal matrices $X,Y$. The Sinkhorn algorithm is a simple iterative algorithm, which repeats row-normalization $A_{ij} \leftarrow A_{ij}/\sum_{j}A_{ij}$ and column-normalization $A_{ij} \leftarrow A_{ij}/\sum_{i}A_{ij}$ alternatively. By this algorithm, $A$ converges to a doubly stochastic matrix in limit if and only if the bipartite graph associated with $A$ has a perfect matching. This property can decide the existence of a perfect matching in a given bipartite graph $G$, which is identified with the $0,1$-matrix $A_G$. Linial, Samorodnitsky, and Wigderson showed that a polynomial number of the Sinkhorn iterations for $A_G$ decides whether $G$ has a perfect matching. In this paper, we show an extension of this result: If $G$ has no perfect matching, then a polynomial number of the Sinkhorn iterations identifies a Hall blocker -- a certificate of the nonexistence of a perfect matching. Our analysis is based on an interpretation of the Sinkhorn algorithm as alternating KL-divergence minimization (Csisz\'{a}r and Tusn\'{a}dy 1984, Gietl and Reffel 2013) and its limiting behavior for a nonscalable matrix (Aas 2014). We also relate the Sinkhorn limit with parametric network flow, principal partition of polymatroids, and the Dulmage-Mendelsohn decomposition of a bipartite graph.

In 1954, Alston S. Householder published Principles of Numerical Analysis, one of the first modern treatments on matrix decomposition that favored a (block) LU decomposition-the factorization of a matrix into the product of lower and upper triangular matrices. And now, matrix decomposition has become a core technology in machine learning, largely due to the development of the back propagation algorithm in fitting a neural network. The sole aim of this survey is to give a self-contained introduction to concepts and mathematical tools in numerical linear algebra and matrix analysis in order to seamlessly introduce matrix decomposition techniques and their applications in subsequent sections. However, we clearly realize our inability to cover all the useful and interesting results concerning matrix decomposition and given the paucity of scope to present this discussion, e.g., the separated analysis of the Euclidean space, Hermitian space, Hilbert space, and things in the complex domain. We refer the reader to literature in the field of linear algebra for a more detailed introduction to the related fields.

Since real-world objects and their interactions are often multi-modal and multi-typed, heterogeneous networks have been widely used as a more powerful, realistic, and generic superclass of traditional homogeneous networks (graphs). Meanwhile, representation learning (\aka~embedding) has recently been intensively studied and shown effective for various network mining and analytical tasks. In this work, we aim to provide a unified framework to deeply summarize and evaluate existing research on heterogeneous network embedding (HNE), which includes but goes beyond a normal survey. Since there has already been a broad body of HNE algorithms, as the first contribution of this work, we provide a generic paradigm for the systematic categorization and analysis over the merits of various existing HNE algorithms. Moreover, existing HNE algorithms, though mostly claimed generic, are often evaluated on different datasets. Understandable due to the application favor of HNE, such indirect comparisons largely hinder the proper attribution of improved task performance towards effective data preprocessing and novel technical design, especially considering the various ways possible to construct a heterogeneous network from real-world application data. Therefore, as the second contribution, we create four benchmark datasets with various properties regarding scale, structure, attribute/label availability, and \etc.~from different sources, towards handy and fair evaluations of HNE algorithms. As the third contribution, we carefully refactor and amend the implementations and create friendly interfaces for 13 popular HNE algorithms, and provide all-around comparisons among them over multiple tasks and experimental settings.

Attention Model has now become an important concept in neural networks that has been researched within diverse application domains. This survey provides a structured and comprehensive overview of the developments in modeling attention. In particular, we propose a taxonomy which groups existing techniques into coherent categories. We review salient neural architectures in which attention has been incorporated, and discuss applications in which modeling attention has shown a significant impact. Finally, we also describe how attention has been used to improve the interpretability of neural networks. We hope this survey will provide a succinct introduction to attention models and guide practitioners while developing approaches for their applications.

北京阿比特科技有限公司