We revisit the question of characterizing the convergence rate of plug-in estimators of optimal transport costs. It is well known that an empirical measure comprising independent samples from an absolutely continuous distribution on $\mathbb{R}^d$ converges to that distribution at the rate $n^{-1/d}$ in Wasserstein distance, which can be used to prove that plug-in estimators of many optimal transport costs converge at this same rate. However, we show that when the cost is smooth, this analysis is loose: plug-in estimators based on empirical measures converge quadratically faster, at the rate $n^{-2/d}$. As a corollary, we show that the Wasserstein distance between two distributions is significantly easier to estimate when the measures are far apart. We also prove lower bounds, showing not only that our analysis of the plug-in estimator is tight, but also that no other estimator can enjoy significantly faster rates of convergence uniformly over all pairs of measures. Our proofs rely on empirical process theory arguments based on tight control of $L^2$ covering numbers for locally Lipschitz and semi-concave functions. As a byproduct of our proofs, we derive $L^\infty$ estimates on the displacement induced by the optimal coupling between any two measures satisfying suitable moment conditions, for a wide range of cost functions.
Consider supervised learning from i.i.d. samples $\{{\boldsymbol x}_i,y_i\}_{i\le n}$ where ${\boldsymbol x}_i \in\mathbb{R}^p$ are feature vectors and ${y} \in \mathbb{R}$ are labels. We study empirical risk minimization over a class of functions that are parameterized by $\mathsf{k} = O(1)$ vectors ${\boldsymbol \theta}_1, . . . , {\boldsymbol \theta}_{\mathsf k} \in \mathbb{R}^p$ , and prove universality results both for the training and test error. Namely, under the proportional asymptotics $n,p\to\infty$, with $n/p = \Theta(1)$, we prove that the training error depends on the random features distribution only through its covariance structure. Further, we prove that the minimum test error over near-empirical risk minimizers enjoys similar universality properties. In particular, the asymptotics of these quantities can be computed $-$to leading order$-$ under a simpler model in which the feature vectors ${\boldsymbol x}_i$ are replaced by Gaussian vectors ${\boldsymbol g}_i$ with the same covariance. Earlier universality results were limited to strongly convex learning procedures, or to feature vectors ${\boldsymbol x}_i$ with independent entries. Our results do not make any of these assumptions. Our assumptions are general enough to include feature vectors ${\boldsymbol x}_i$ that are produced by randomized featurization maps. In particular we explicitly check the assumptions for certain random features models (computing the output of a one-layer neural network with random weights) and neural tangent models (first-order Taylor approximation of two-layer networks).
The idea of using polynomial methods to improve simple smoother iterations within a multigrid method for a symmetric positive definite (SPD) system is revisited. When the single-step smoother itself corresponds to an SPD operator, there is in particular a very simple iteration, a close cousin of the Chebyshev semi-iterative method, based on the Chebyshev polynomials of the fourth instead of first kind, that optimizes a two-level bound going back to Hackbusch. A full V-cycle bound for general polynomial smoothers is derived using the V-cycle theory of McCormick. The fourth-kind Chebyshev iteration is quasi-optimal for the V-cycle bound. The optimal polynomials for the V-cycle bound can be found numerically, achieving an about 18% lower error contraction factor bound than the fourth-kind Chebyshev iteration, asymptotically as the number of smoothing steps goes to infinity. Implementation of the optimized iteration is discussed, and the performance of the polynomial smoothers are illustrated with a simple numerical example.
Natural policy gradient (NPG) methods with entropy regularization achieve impressive empirical success in reinforcement learning problems with large state-action spaces. However, their convergence properties and the impact of entropy regularization remain elusive in the function approximation regime. In this paper, we establish finite-time convergence analyses of entropy-regularized NPG with linear function approximation under softmax parameterization. In particular, we prove that entropy-regularized NPG with averaging satisfies the \emph{persistence of excitation} condition, and achieves a fast convergence rate of $\tilde{O}(1/T)$ up to a function approximation error in regularized Markov decision processes. This convergence result does not require any a priori assumptions on the policies. Furthermore, under mild regularity conditions on the concentrability coefficient and basis vectors, we prove that entropy-regularized NPG exhibits \emph{linear convergence} up to a function approximation error.
We revisit convergence rates for maximum likelihood estimation (MLE) under finite mixture models. The Wasserstein distance has become a standard loss function for the analysis of parameter estimation in these models, due in part to its ability to circumvent label switching and to accurately characterize the behaviour of fitted mixture components with vanishing weights. However, the Wasserstein metric is only able to capture the worst-case convergence rate among the remaining fitted mixture components. We demonstrate that when the log-likelihood function is penalized to discourage vanishing mixing weights, stronger loss functions can be derived to resolve this shortcoming of the Wasserstein distance. These new loss functions accurately capture the heterogeneity in convergence rates of fitted mixture components, and we use them to sharpen existing pointwise and uniform convergence rates in various classes of mixture models. In particular, these results imply that a subset of the components of the penalized MLE typically converge significantly faster than could have been anticipated from past work. We further show that some of these conclusions extend to the traditional MLE. Our theoretical findings are supported by a simulation study to illustrate these improved convergence rates.
We study algorithmic applications of a natural discretization for the hard-sphere model and the Widom-Rowlinson model in a region $\mathbb{V}\subset\mathbb{R}^d$. These models are used in statistical physics to describe mixtures of one or multiple particle types subjected to hard-core interactions. For each type, particles follow a Poisson point process with a type specific activity parameter (fugacity). The Gibbs distribution is characterized by the mixture of these point processes conditioned that no two particles are closer than a type-dependent distance threshold. A key part in better understanding the Gibbs distribution is its normalizing constant, called partition function. We give sufficient conditions that the partition function of a discrete hard-core model on a geometric graph based on a point set $X \subset \mathbb{V}$ closely approximates those of such continuous models. Previously, this was only shown for the hard-sphere model on cubic regions $\mathbb{V}=[0, \ell)^d$ when $X$ is exponential in the volume of the region $\nu(\mathbb{V})$, limiting algorithmic applications. In the same setting, our refined analysis only requires a quadratic number of points, which we argue to be tight. We use our improved discretization results to approximate the partition functions of the hard-sphere model and the Widom-Rowlinson efficiently in $\nu(\mathbb{V})$. For the hard-sphere model, we obtain the first quasi-polynomial deterministic approximation algorithm for the entire fugacity regime for which, so far, only randomized approximations are known. Furthermore, we simplify a recently introduced fully polynomial randomized approximation algorithm. Similarly, we obtain the best known deterministic and randomized approximation bounds for the Widom-Rowlinson model. Moreover, we obtain approximate sampling algorithms for the respective spin systems within the same fugacity regimes.
This paper introduces the first statistically consistent estimator of the optimal transport map between two probability distributions, based on neural networks. Building on theoretical and practical advances in the field of Lipschitz neural networks, we define a Lipschitz-constrained generative adversarial network penalized by the quadratic transportation cost. Then, we demonstrate that, under regularity assumptions, the obtained generator converges uniformly to the optimal transport map as the sample size increases to infinity. Furthermore, we show through a number of numerical experiments that the learnt mapping has promising performances. In contrast to previous work tackling either statistical guarantees or practicality, we provide an expressive and feasible estimator which paves way for optimal transport applications where the asymptotic behaviour must be certified.
In this paper, we investigate the problem of stochastic multi-level compositional optimization, where the objective function is a composition of multiple smooth but possibly non-convex functions. Existing methods for solving this problem either suffer from sub-optimal sample complexities or need a huge batch size. To address this limitation, we propose a Stochastic Multi-level Variance Reduction method (SMVR), which achieves the optimal sample complexity of $\mathcal{O}\left(1 / \epsilon^{3}\right)$ to find an $\epsilon$-stationary point for non-convex objectives. Furthermore, when the objective function satisfies the convexity or Polyak-Lojasiewicz (PL) condition, we propose a stage-wise variant of SMVR and improve the sample complexity to $\mathcal{O}\left(1 / \epsilon^{2}\right)$ for convex functions or $\mathcal{O}\left(1 /(\mu\epsilon)\right)$ for non-convex functions satisfying the $\mu$-PL condition. The latter result implies the same complexity for $\mu$-strongly convex functions. To make use of adaptive learning rates, we also develop Adaptive SMVR, which achieves the same optimal complexities but converges faster in practice. All our complexities match the lower bounds not only in terms of $\epsilon$ but also in terms of $\mu$ (for PL or strongly convex functions), without using a large batch size in each iteration.
Fast and accurate predictions of uncertainties in the computed dose are crucial for the determination of robust treatment plans in radiation therapy. This requires the solution of particle transport problems with uncertain parameters or initial conditions. Monte Carlo methods are often used to solve transport problems especially for applications which require high accuracy. In these cases, common non-intrusive solution strategies that involve repeated simulations of the problem at different points in the parameter space quickly become infeasible due to their long run-times. Intrusive methods however limit the usability in combination with proprietary simulation engines. In our previous paper [51], we demonstrated the application of a new non-intrusive uncertainty quantification approach for Monte Carlo simulations in proton dose calculations with normally distributed errors on realistic patient data. In this paper, we introduce a generalized formulation and focus on a more in-depth theoretical analysis of this method concerning bias, error and convergence of the estimates. The multivariate input model of the proposed approach further supports almost arbitrary error correlation models. We demonstrate how this framework can be used to model and efficiently quantify complex auto-correlated and time-dependent errors.
Diffusion models have recently outperformed alternative approaches to model the distribution of natural images, such as GANs. Such diffusion models allow for deterministic sampling via the probability flow ODE, giving rise to a latent space and an encoder map. While having important practical applications, such as estimation of the likelihood, the theoretical properties of this map are not yet fully understood. In the present work, we partially address this question for the popular case of the VP SDE (DDPM) approach. We show that, perhaps surprisingly, the DDPM encoder map coincides with the optimal transport map for common distributions; we support this claim theoretically and by extensive numerical experiments.
We propose a new method of estimation in topic models, that is not a variation on the existing simplex finding algorithms, and that estimates the number of topics K from the observed data. We derive new finite sample minimax lower bounds for the estimation of A, as well as new upper bounds for our proposed estimator. We describe the scenarios where our estimator is minimax adaptive. Our finite sample analysis is valid for any number of documents (n), individual document length (N_i), dictionary size (p) and number of topics (K), and both p and K are allowed to increase with n, a situation not handled well by previous analyses. We complement our theoretical results with a detailed simulation study. We illustrate that the new algorithm is faster and more accurate than the current ones, although we start out with a computational and theoretical disadvantage of not knowing the correct number of topics K, while we provide the competing methods with the correct value in our simulations.