Machine learning models always make a prediction, even when it is likely to be inaccurate. This behavior should be avoided in many decision support applications, where mistakes can have severe consequences. Albeit already studied in 1970, machine learning with rejection recently gained interest. This machine learning subfield enables machine learning models to abstain from making a prediction when likely to make a mistake. This survey aims to provide an overview on machine learning with rejection. We introduce the conditions leading to two types of rejection, ambiguity and novelty rejection, which we carefully formalize. Moreover, we review and categorize strategies to evaluate a model's predictive and rejective quality. Additionally, we define the existing architectures for models with rejection and describe the standard techniques for learning such models. Finally, we provide examples of relevant application domains and show how machine learning with rejection relates to other machine learning research areas.
Deep learning-based methods have been extensively explored for automatic building mapping from high-resolution remote sensing images over recent years. While most building mapping models produce vector polygons of buildings for geographic and mapping systems, dominant methods typically decompose polygonal building extraction in some sub-problems, including segmentation, polygonization, and regularization, leading to complex inference procedures, low accuracy, and poor generalization. In this paper, we propose a simple and novel building mapping method with Hierarchical Transformers, called HiT, improving polygonal building mapping quality from high-resolution remote sensing images. HiT builds on a two-stage detection architecture by adding a polygon head parallel to classification and bounding box regression heads. HiT simultaneously outputs building bounding boxes and vector polygons, which is fully end-to-end trainable. The polygon head formulates a building polygon as serialized vertices with the bidirectional characteristic, a simple and elegant polygon representation avoiding the start or end vertex hypothesis. Under this new perspective, the polygon head adopts a transformer encoder-decoder architecture to predict serialized vertices supervised by the designed bidirectional polygon loss. Furthermore, a hierarchical attention mechanism combined with convolution operation is introduced in the encoder of the polygon head, providing more geometric structures of building polygons at vertex and edge levels. Comprehensive experiments on two benchmarks (the CrowdAI and Inria datasets) demonstrate that our method achieves a new state-of-the-art in terms of instance segmentation and polygonal metrics compared with state-of-the-art methods. Moreover, qualitative results verify the superiority and effectiveness of our model under complex scenes.
Weakly supervised learning is a popular approach for training machine learning models in low-resource settings. Instead of requesting high-quality yet costly human annotations, it allows training models with noisy annotations obtained from various weak sources. Recently, many sophisticated approaches have been proposed for robust training under label noise, reporting impressive results. In this paper, we revisit the setup of these approaches and find that the benefits brought by these approaches are significantly overestimated. Specifically, we find that the success of existing weakly supervised learning approaches heavily relies on the availability of clean validation samples which, as we show, can be leveraged much more efficiently by simply training on them. After using these clean labels in training, the advantages of using these sophisticated approaches are mostly wiped out. This remains true even when reducing the size of the available clean data to just five samples per class, making these approaches impractical. To understand the true value of weakly supervised learning, we thoroughly analyze diverse NLP datasets and tasks to ascertain when and why weakly supervised approaches work. Based on our findings, we provide recommendations for future research.
Software frameworks for behaviour are critical in robotics as they enable the correct and efficient execution of functions. While modern behaviour systems have improved their composability, they do not focus on smooth transitions and often lack functionality. In this work, we present the Director, a novel behaviour framework and algorithm that addresses these problems. It has functionality for soft transitions, multiple implementations of the same action chosen based on conditionals, and strict resource control. This system has shown success in the Humanoid Kid Size 2022/2023 Virtual Season and the Humanoid Kid Size RoboCup 2023 Bordeaux competition.
Continual learning is increasingly sought after in real world machine learning applications, as it enables learning in a more human-like manner. Conventional machine learning approaches fail to achieve this, as incrementally updating the model with non-identically distributed data leads to catastrophic forgetting, where existing representations are overwritten. Although traditional continual learning methods have mostly focused on batch learning, which involves learning from large collections of labeled data sequentially, this approach is not well-suited for real-world applications where we would like new data to be integrated directly. This necessitates a paradigm shift towards streaming learning. In this paper, we propose a streaming version of regularized discriminant analysis as a solution to this challenge. We combine our algorithm with a convolutional neural network and demonstrate that it outperforms both batch learning and existing streaming learning algorithms on the ImageNet ILSVRC-2012 dataset.
Weakly supervised learning aims to empower machine learning when the perfect supervision is unavailable, which has drawn great attention from researchers. Among various types of weak supervision, one of the most challenging cases is to learn from multiple unlabeled (U) datasets with only a little knowledge of the class priors, or U$^m$ learning for short. In this paper, we study the problem of building an AUC (area under ROC curve) optimization model from multiple unlabeled datasets, which maximizes the pairwise ranking ability of the classifier. We propose U$^m$-AUC, an AUC optimization approach that converts the U$^m$ data into a multi-label AUC optimization problem, and can be trained efficiently. We show that the proposed U$^m$-AUC is effective theoretically and empirically.
Causality knowledge is vital to building robust AI systems. Deep learning models often perform poorly on tasks that require causal reasoning, which is often derived using some form of commonsense knowledge not immediately available in the input but implicitly inferred by humans. Prior work has unraveled spurious observational biases that models fall prey to in the absence of causality. While language representation models preserve contextual knowledge within learned embeddings, they do not factor in causal relationships during training. By blending causal relationships with the input features to an existing model that performs visual cognition tasks (such as scene understanding, video captioning, video question-answering, etc.), better performance can be achieved owing to the insight causal relationships bring about. Recently, several models have been proposed that have tackled the task of mining causal data from either the visual or textual modality. However, there does not exist widespread research that mines causal relationships by juxtaposing the visual and language modalities. While images offer a rich and easy-to-process resource for us to mine causality knowledge from, videos are denser and consist of naturally time-ordered events. Also, textual information offers details that could be implicit in videos. We propose iReason, a framework that infers visual-semantic commonsense knowledge using both videos and natural language captions. Furthermore, iReason's architecture integrates a causal rationalization module to aid the process of interpretability, error analysis and bias detection. We demonstrate the effectiveness of iReason using a two-pronged comparative analysis with language representation learning models (BERT, GPT-2) as well as current state-of-the-art multimodal causality models.
Recently, contrastive learning (CL) has emerged as a successful method for unsupervised graph representation learning. Most graph CL methods first perform stochastic augmentation on the input graph to obtain two graph views and maximize the agreement of representations in the two views. Despite the prosperous development of graph CL methods, the design of graph augmentation schemes -- a crucial component in CL -- remains rarely explored. We argue that the data augmentation schemes should preserve intrinsic structures and attributes of graphs, which will force the model to learn representations that are insensitive to perturbation on unimportant nodes and edges. However, most existing methods adopt uniform data augmentation schemes, like uniformly dropping edges and uniformly shuffling features, leading to suboptimal performance. In this paper, we propose a novel graph contrastive representation learning method with adaptive augmentation that incorporates various priors for topological and semantic aspects of the graph. Specifically, on the topology level, we design augmentation schemes based on node centrality measures to highlight important connective structures. On the node attribute level, we corrupt node features by adding more noise to unimportant node features, to enforce the model to recognize underlying semantic information. We perform extensive experiments of node classification on a variety of real-world datasets. Experimental results demonstrate that our proposed method consistently outperforms existing state-of-the-art baselines and even surpasses some supervised counterparts, which validates the effectiveness of the proposed contrastive framework with adaptive augmentation.
Traffic forecasting is an important factor for the success of intelligent transportation systems. Deep learning models including convolution neural networks and recurrent neural networks have been applied in traffic forecasting problems to model the spatial and temporal dependencies. In recent years, to model the graph structures in the transportation systems as well as the contextual information, graph neural networks (GNNs) are introduced as new tools and have achieved the state-of-the-art performance in a series of traffic forecasting problems. In this survey, we review the rapidly growing body of recent research using different GNNs, e.g., graph convolutional and graph attention networks, in various traffic forecasting problems, e.g., road traffic flow and speed forecasting, passenger flow forecasting in urban rail transit systems, demand forecasting in ride-hailing platforms, etc. We also present a collection of open data and source resources for each problem, as well as future research directions. To the best of our knowledge, this paper is the first comprehensive survey that explores the application of graph neural networks for traffic forecasting problems. We have also created a public Github repository to update the latest papers, open data and source resources.
This paper surveys the machine learning literature and presents machine learning as optimization models. Such models can benefit from the advancement of numerical optimization techniques which have already played a distinctive role in several machine learning settings. Particularly, mathematical optimization models are presented for commonly used machine learning approaches for regression, classification, clustering, and deep neural networks as well new emerging applications in machine teaching and empirical model learning. The strengths and the shortcomings of these models are discussed and potential research directions are highlighted.
It is important to detect anomalous inputs when deploying machine learning systems. The use of larger and more complex inputs in deep learning magnifies the difficulty of distinguishing between anomalous and in-distribution examples. At the same time, diverse image and text data are available in enormous quantities. We propose leveraging these data to improve deep anomaly detection by training anomaly detectors against an auxiliary dataset of outliers, an approach we call Outlier Exposure (OE). This enables anomaly detectors to generalize and detect unseen anomalies. In extensive experiments on natural language processing and small- and large-scale vision tasks, we find that Outlier Exposure significantly improves detection performance. We also observe that cutting-edge generative models trained on CIFAR-10 may assign higher likelihoods to SVHN images than to CIFAR-10 images; we use OE to mitigate this issue. We also analyze the flexibility and robustness of Outlier Exposure, and identify characteristics of the auxiliary dataset that improve performance.