亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Accurate hand gesture prediction is crucial for effective upper-limb prosthetic limbs control. As the high flexibility and multiple degrees of freedom exhibited by human hands, there has been a growing interest in integrating deep networks with high-density surface electromyography (HD-sEMG) grids to enhance gesture recognition capabilities. However, many existing methods fall short in fully exploit the specific spatial topology and temporal dependencies present in HD-sEMG data. Additionally, these studies are often limited number of gestures and lack generality. Hence, this study introduces a novel gesture recognition method, named STGCN-GR, which leverages spatio-temporal graph convolution networks for HD-sEMG-based human-machine interfaces. Firstly, we construct muscle networks based on functional connectivity between channels, creating a graph representation of HD-sEMG recordings. Subsequently, a temporal convolution module is applied to capture the temporal dependences in the HD-sEMG series and a spatial graph convolution module is employed to effectively learn the intrinsic spatial topology information among distinct HD-sEMG channels. We evaluate our proposed model on a public HD-sEMG dataset comprising a substantial number of gestures (i.e., 65). Our results demonstrate the remarkable capability of the STGCN-GR method, achieving an impressive accuracy of 91.07% in predicting gestures, which surpasses state-of-the-art deep learning methods applied to the same dataset.

相關內容

Tissue segmentation is a routine preprocessing step to reduce the computational cost of whole slide image (WSI) analysis by excluding background regions. Traditional image processing techniques are commonly used for tissue segmentation, but often require manual adjustments to parameter values for atypical cases, fail to exclude all slide and scanning artifacts from the background, and are unable to segment adipose tissue. Pen marking artifacts in particular can be a potential source of bias for subsequent analyses if not removed. In addition, several applications require the separation of individual cross-sections, which can be challenging due to tissue fragmentation and adjacent positioning. To address these problems, we develop a convolutional neural network for tissue and pen marking segmentation using a dataset of 200 H&E stained WSIs. For separating tissue cross-sections, we propose a novel post-processing method based on clustering predicted centroid locations of the cross-sections in a 2D histogram. On an independent test set, the model achieved a mean Dice score of 0.981$\pm$0.033 for tissue segmentation and a mean Dice score of 0.912$\pm$0.090 for pen marking segmentation. The mean absolute difference between the number of annotated and separated cross-sections was 0.075$\pm$0.350. Our results demonstrate that the proposed model can accurately segment H&E stained tissue cross-sections and pen markings in WSIs while being robust to many common slide and scanning artifacts. The model with trained model parameters and post-processing method are made publicly available as a Python package called SlideSegmenter.

Thin-plate spline (TPS) is a principal warp that allows for representing elastic, nonlinear transformation with control point motions. With the increase of control points, the warp becomes increasingly flexible but usually encounters a bottleneck caused by undesired issues, e.g., content distortion. In this paper, we explore generic applications of TPS in single-image-based warping tasks, such as rotation correction, rectangling, and portrait correction. To break this bottleneck, we propose the coupled thin-plate spline model (CoupledTPS), which iteratively couples multiple TPS with limited control points into a more flexible and powerful transformation. Concretely, we first design an iterative search to predict new control points according to the current latent condition. Then, we present the warping flow as a bridge for the coupling of different TPS transformations, effectively eliminating interpolation errors caused by multiple warps. Besides, in light of the laborious annotation cost, we develop a semi-supervised learning scheme to improve warping quality by exploiting unlabeled data. It is formulated through dual transformation between the searched control points of unlabeled data and its graphic augmentation, yielding an implicit correction consistency constraint. Finally, we collect massive unlabeled data to exhibit the benefit of our semi-supervised scheme in rotation correction. Extensive experiments demonstrate the superiority and universality of CoupledTPS over the existing state-of-the-art (SoTA) solutions for rotation correction and beyond. The code and data will be available at //github.com/nie-lang/CoupledTPS.

In this paper, a comparison analysis between geometric impedance controls (GICs) derived from two different potential functions on SE(3) for robotic manipulators is presented. The first potential function is defined on the Lie group, utilizing the Frobenius norm of the configuration error matrix. The second potential function is defined utilizing the Lie algebra, i.e., log-map of the configuration error. Using a differential geometric approach, the detailed derivation of the distance metric and potential function on SE(3) is introduced. The GIC laws are respectively derived from the two potential functions, followed by extensive comparison analyses. In the qualitative analysis, the properties of the error function and control laws are analyzed, while the performances of the controllers are quantitatively compared using numerical simulation.

Control barrier functions (CBFs) provide a simple yet effective way for safe control synthesis. Recently, work has been done using differentiable optimization based methods to systematically construct CBFs for static obstacle avoidance tasks between geometric shapes. In this work, we extend the application of differentiable optimization based CBFs to perform dynamic obstacle avoidance tasks. We show that by using the time-varying CBF (TVCBF) formulation, we can perform obstacle avoidance for dynamic geometric obstacles. Additionally, we show how to alter the TVCBF constraint to consider measurement noise and actuation limits. To demonstrate the efficacy of our proposed approach, we first compare its performance with a model predictive control based method on a simulated dynamic obstacle avoidance task with non-ellipsoidal obstacles. Then, we demonstrate the performance of our proposed approach in experimental studies using a 7-degree-of-freedom Franka Research 3 robotic manipulator.

When using ordinal patterns, which describe the ordinal structure within a data vector, the problem of ties appeared permanently. So far, model classes were used which do not allow for ties; randomization has been another attempt to overcome this problem. Often, time periods with constant values even have been counted as times of monotone increase. To overcome this, a new approach is proposed: it explicitly allows for ties and, hence, considers more patterns than before. Ties are no longer seen as nuisance, but to carry valuable information. Limit theorems in the new framework are provided, both, for a single time series and for the dependence between two time series. The methods are used on hydrological data sets. It is common to distinguish five flood classes (plus 'absence of flood'). Considering data vectors of these classes at a certain gauge in a river basin, one will usually encounter several ties. Co-monotonic behavior between the data sets of two gauges (increasing, constant, decreasing) can be detected by the method as well as spatial patterns. Thus, it helps to analyze the strength of dependence between different gauges in an intuitive way. This knowledge can be used to asses risk and to plan future construction projects.

Cell-free massive multi-input multi-output (MIMO) has recently gained much attention for its potential in shaping the landscape of sixth-generation (6G) wireless systems. This paper proposes a hierarchical network architecture tailored for cell-free massive MIMO, seamlessly integrating co-located and distributed antennas. A central base station (CBS), equipped with an antenna array, positions itself near the center of the coverage area, complemented by distributed access points spanning the periphery. The proposed architecture remarkably outperforms conventional cell-free networks, demonstrating superior sum throughput while maintaining a comparable worst-case per-user spectral efficiency. Meanwhile, the implementation cost associated with the fronthaul network is substantially diminished.

Face inpainting requires the model to have a precise global understanding of the facial position structure. Benefiting from the powerful capabilities of deep learning backbones, recent works in face inpainting have achieved decent performance in ideal setting (square shape with $512px$). However, existing methods often produce a visually unpleasant result, especially in the position-sensitive details (e.g., eyes and nose), when directly applied to arbitrary-shaped images in real-world scenarios. The visually unpleasant position-sensitive details indicate the shortcomings of existing methods in terms of position information processing capability. In this paper, we propose an \textbf{I}mplicit \textbf{N}eural \textbf{I}npainting \textbf{N}etwork (IN$^2$) to handle arbitrary-shape face images in real-world scenarios by explicit modeling for position information. Specifically, a downsample processing encoder is proposed to reduce information loss while obtaining the global semantic feature. A neighbor hybrid attention block is proposed with a hybrid attention mechanism to improve the facial understanding ability of the model without restricting the shape of the input. Finally, an implicit neural pyramid decoder is introduced to explicitly model position information and bridge the gap between low-resolution features and high-resolution output. Extensive experiments demonstrate the superiority of the proposed method in real-world face inpainting task.

Many physical processes in science and engineering are naturally represented by operators between infinite-dimensional function spaces. The problem of operator learning, in this context, seeks to extract these physical processes from empirical data, which is challenging due to the infinite or high dimensionality of data. An integral component in addressing this challenge is model reduction, which reduces both the data dimensionality and problem size. In this paper, we utilize low-dimensional nonlinear structures in model reduction by investigating Auto-Encoder-based Neural Network (AENet). AENet first learns the latent variables of the input data and then learns the transformation from these latent variables to corresponding output data. Our numerical experiments validate the ability of AENet to accurately learn the solution operator of nonlinear partial differential equations. Furthermore, we establish a mathematical and statistical estimation theory that analyzes the generalization error of AENet. Our theoretical framework shows that the sample complexity of training AENet is intricately tied to the intrinsic dimension of the modeled process, while also demonstrating the remarkable resilience of AENet to noise.

This paper discusses the control of coherent structures in turbulent flows, which has broad applications among complex systems in science and technology. Mean field games have been proved a powerful tool and are proposed here to control the stochastic Lagrangian tracers as players tracking the flow field. We derive optimal control solutions for general nonlinear fluid systems using mean field game models, and develop computational algorithms to efficiently solve the resulting coupled forward and backward mean field system. A precise link is established for the control of Lagrangian tracers and the scalar vorticity field based on the functional Hamilton-Jacobi equations derived from the mean field models. New iterative numerical strategy is then constructed to compute the optimal solution with fast convergence. We verify the skill of the mean field control models and illustrate their practical efficiency on a prototype model modified from the viscous Burger's equation under various cost functions in both deterministic and stochastic formulations. The good model performance implies potential effectiveness of the strategy for more general high-dimensional turbulent systems.

Multi-fidelity (MF) methods are gaining popularity for enhancing surrogate modeling and design optimization by incorporating data from various low-fidelity (LF) models. While most existing MF methods assume a fixed dataset, adaptive sampling methods that dynamically allocate resources among fidelity models can achieve higher efficiency in the exploring and exploiting the design space. However, most existing MF methods rely on the hierarchical assumption of fidelity levels or fail to capture the intercorrelation between multiple fidelity levels and utilize it to quantify the value of the future samples and navigate the adaptive sampling. To address this hurdle, we propose a framework hinged on a latent embedding for different fidelity models and the associated pre-posterior analysis to explicitly utilize their correlation for adaptive sampling. In this framework, each infill sampling iteration includes two steps: We first identify the location of interest with the greatest potential improvement using the high-fidelity (HF) model, then we search for the next sample across all fidelity levels that maximize the improvement per unit cost at the location identified in the first step. This is made possible by a single Latent Variable Gaussian Process (LVGP) model that maps different fidelity models into an interpretable latent space to capture their correlations without assuming hierarchical fidelity levels. The LVGP enables us to assess how LF sampling candidates will affect HF response with pre-posterior analysis and determine the next sample with the best benefit-to-cost ratio. Through test cases, we demonstrate that the proposed method outperforms the benchmark methods in both MF global fitting (GF) and Bayesian Optimization (BO) problems in convergence rate and robustness. Moreover, the method offers the flexibility to switch between GF and BO by simply changing the acquisition function.

北京阿比特科技有限公司