亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Quantum annealing (QA) is proposed for vector perturbation precoding (VPP) in multiple input multiple output (MIMO) communications systems. The mathematical framework of VPP is presented, outlining the problem formulation and the benefits of lattice reduction algorithms. Lattice reduction aided quantum vector perturbation (LRAQVP) is designed by harnessing physical quantum hardware, and the optimization of hardware parameters is discussed. We observe a 5dB gain over lattice reduction zero forcing precoding (LRZFP), which behaves similarly to a quantum annealing algorithm operating without a lattice reduction stage. The proposed algorithm is also shown to approach the performance of a sphere encoder, which exhibits an exponentially escalating complexity.

相關內容

Graph Neural Networks (GNNs) are emerging ML models to analyze graph-structure data. Graph Neural Network (GNN) execution involves both compute-intensive and memory-intensive kernels, the latter dominates the total time, being significantly bottlenecked by data movement between memory and processors. Processing-In-Memory (PIM) systems can alleviate this data movement bottleneck by placing simple processors near or inside to memory arrays. In this work, we introduce PyGim, an efficient ML framework that accelerates GNNs on real PIM systems. We propose intelligent parallelization techniques for memory-intensive kernels of GNNs tailored for real PIM systems, and develop handy Python API for them. We provide hybrid GNN execution, in which the compute-intensive and memory-intensive kernels are executed in processor-centric and memory-centric computing systems, respectively, to match their algorithmic nature. We extensively evaluate PyGim on a real-world PIM system with 1992 PIM cores using emerging GNN models, and demonstrate that it outperforms its state-of-the-art CPU counterpart on Intel Xeon by on average 3.04x, and achieves higher resource utilization than CPU and GPU systems. Our work provides useful recommendations for software, system and hardware designers. PyGim will be open-sourced to enable the widespread use of PIM systems in GNNs.

Efficient implementation of massive multiple-input-multiple-output (MIMO) transceivers is essential for the next-generation wireless networks. To reduce the high computational complexity of the massive MIMO transceiver, in this paper, we propose a new massive MIMO architecture using finite-precision arithmetic. First, we conduct the rounding error analysis and derive the lower bound of the achievable rate for single-input-multiple-output (SIMO) using maximal ratio combining (MRC) and multiple-input-single-output (MISO) systems using maximal ratio transmission (MRT) with finite-precision arithmetic. Then, considering the multi-user scenario, the rounding error analysis of zero-forcing (ZF) detection and precoding is derived by using the normal equations (NE) method. The corresponding lower bounds of the achievable sum rate are also derived and asymptotic analyses are presented. Built upon insights from these analyses and lower bounds, we propose a mixed-precision architecture for massive MIMO systems to offset performance gaps due to finite-precision arithmetic. The corresponding analysis of rounding errors and computational costs is obtained. Simulation results validate the derived bounds and underscore the superiority of the proposed mixed-precision architecture to the conventional structure.

For doubly-selective channels, delay-Doppler (DD) modulation, mostly known as orthogonal time frequency space (OTFS) modulation, enables simultaneous compensation of delay and Doppler shifts. However, OTFS modulated signal has high peak-to-average power ratio (PAPR) because of its precoding operation performed over the DD domain. In order to deal with this problem, we propose a single-carrier transmission with delay-Doppler domain equalization (SC-DDE). In this system, the discretized time-domain SC signal is converted to the DD domain by discrete Zak transform (DZT) at the receiver side, followed by delay-Doppler domain equalization (DDE). Since equalization is performed in the DD domain, the SC-DDE receiver should acquire the channel delay-Doppler response. To this end, we introduce an embedded pilot-aided channel estimation scheme designed for SC-DDE, which does not affect the peak power property of transmitted signals. Through computer simulation, distribution of PAPR and bit error rate (BER) performance of the proposed system are compared with those of the conventional OTFS and SC with frequency-domain equalization (SC-FDE). As a result, our proposed SC-DDE significantly outperforms SC-FDE in terms of BER at the expense of additional computational complexity at the receiver. Furthermore, SC-DDE shows much lower PAPR than OTFS even though they achieve comparable coded BER performance.

Conventional beamforming with fixed-position antenna (FPA) arrays has a fundamental trade-off between maximizing the signal power (array gain) over a desired direction and simultaneously minimizing the interference power over undesired directions. To overcome this limitation, this letter investigates the movable antenna (MA) array enhanced beamforming by exploiting the new degree of freedom (DoF) via antenna position optimization, in addition to the design of antenna weights. We show that by jointly optimizing the antenna positions vector (APV) and antenna weights vector (AWV) of a linear MA array, the full array gain can be achieved over the desired direction while null steering can be realized over all undesired directions, under certain numbers of MAs and null-steering directions. The optimal solutions for AWV and APV are derived in closed form, which reveal that the optimal AWV for MA arrays requires only the signal phase adjustment with a fixed amplitude. Numerical results validate our analytical solutions for MA array beamforming and show their superior performance to the conventional beamforming techniques with FPA arrays.

Pruning for Spiking Neural Networks (SNNs) has emerged as a fundamental methodology for deploying deep SNNs on resource-constrained edge devices. Though the existing pruning methods can provide extremely high weight sparsity for deep SNNs, the high weight sparsity brings a workload imbalance problem. Specifically, the workload imbalance happens when a different number of non-zero weights are assigned to hardware units running in parallel. This results in low hardware utilization and thus imposes longer latency and higher energy costs. In preliminary experiments, we show that sparse SNNs (~98% weight sparsity) can suffer as low as ~59% utilization. To alleviate the workload imbalance problem, we propose u-Ticket, where we monitor and adjust the weight connections of the SNN during Lottery Ticket Hypothesis (LTH) based pruning, thus guaranteeing the final ticket gets optimal utilization when deployed onto the hardware. Experiments indicate that our u-Ticket can guarantee up to 100% hardware utilization, thus reducing up to 76.9% latency and 63.8% energy cost compared to the non-utilization-aware LTH method.

Integrating the reconfigurable intelligent surface (RIS) into a cell-free massive multiple-input multiple-output (CF-mMIMO) system is an effective solution to achieve high system capacity with low cost and power consumption. However, existing works of RIS-assisted systems mostly assumed perfect hardware, while the impact of hardware impairments (HWIs) is generally ignored. In this paper, we consider the general Rician fading channel and uplink transmission of the RIS-assisted CF-mMIMO system under transceiver impairments and RIS phase noise. To reduce the feedback overhead and power consumption, we propose a two-timescale transmission scheme to optimize the passive beamformers at RISs with statistical channel state information (CSI), while transmit beamformers at access points (APs) are designed based on instantaneous CSI. Also, the maximum ratio combining (MRC) detection is applied to the central processing unit (CPU). On this basis, we derive the closed-form approximate expression of the achievable rate, based on which the impact of HWIs and the power scaling laws are analyzed to draw useful theoretical insights. To maximize the users' sum rate or minimum rate, we first transform our rate expression into a tractable form, and then optimize the phase shifts of RISs based on an accelerated gradient ascent method. Finally, numerical results are presented to demonstrate the correctness of our derived expressions and validate the previous analysis, which provide some guidelines for the practical application of the imperfect RISs in the CF-mMIMO with transceiver HWIs.

Uncertainty is critical to reliable decision-making with machine learning. Conformal prediction (CP) handles uncertainty by predicting a set on a test input, hoping the set to cover the true label with at least $(1-\alpha)$ confidence. This coverage can be guaranteed on test data even if the marginal distributions $P_X$ differ between calibration and test datasets. However, as it is common in practice, when the conditional distribution $P_{Y|X}$ is different on calibration and test data, the coverage is not guaranteed and it is essential to measure and minimize the coverage loss under distributional shift at \textit{all} possible confidence levels. To address these issues, we upper bound the coverage difference at all levels using the cumulative density functions of calibration and test conformal scores and Wasserstein distance. Inspired by the invariance of physics across data distributions, we propose a physics-informed structural causal model (PI-SCM) to reduce the upper bound. We validated that PI-SCM can improve coverage robustness along confidence level and test domain on a traffic speed prediction task and an epidemic spread task with multiple real-world datasets.

The distortion-rate function of output-constrained lossy source coding with limited common randomness is analyzed for the special case of squared error distortion measure. An explicit expression is obtained when both source and reconstruction distributions are Gaussian. This further leads to a partial characterization of the information-theoretic limit of quadratic Gaussian rate-distortion-perception coding with the perception measure given by Kullback-Leibler divergence or squared quadratic Wasserstein distance.

We study differentially private (DP) algorithms for recovering clusters in well-clustered graphs, which are graphs whose vertex set can be partitioned into a small number of sets, each inducing a subgraph of high inner conductance and small outer conductance. Such graphs have widespread application as a benchmark in the theoretical analysis of spectral clustering. We provide an efficient ($\epsilon$,$\delta$)-DP algorithm tailored specifically for such graphs. Our algorithm draws inspiration from the recent work of Chen et al., who developed DP algorithms for recovery of stochastic block models in cases where the graph comprises exactly two nearly-balanced clusters. Our algorithm works for well-clustered graphs with $k$ nearly-balanced clusters, and the misclassification ratio almost matches the one of the best-known non-private algorithms. We conduct experimental evaluations on datasets with known ground truth clusters to substantiate the prowess of our algorithm. We also show that any (pure) $\epsilon$-DP algorithm would result in substantial error.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司