亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

For doubly-selective channels, delay-Doppler (DD) modulation, mostly known as orthogonal time frequency space (OTFS) modulation, enables simultaneous compensation of delay and Doppler shifts. However, OTFS modulated signal has high peak-to-average power ratio (PAPR) because of its precoding operation performed over the DD domain. In order to deal with this problem, we propose a single-carrier transmission with delay-Doppler domain equalization (SC-DDE). In this system, the discretized time-domain SC signal is converted to the DD domain by discrete Zak transform (DZT) at the receiver side, followed by delay-Doppler domain equalization (DDE). Since equalization is performed in the DD domain, the SC-DDE receiver should acquire the channel delay-Doppler response. To this end, we introduce an embedded pilot-aided channel estimation scheme designed for SC-DDE, which does not affect the peak power property of transmitted signals. Through computer simulation, distribution of PAPR and bit error rate (BER) performance of the proposed system are compared with those of the conventional OTFS and SC with frequency-domain equalization (SC-FDE). As a result, our proposed SC-DDE significantly outperforms SC-FDE in terms of BER at the expense of additional computational complexity at the receiver. Furthermore, SC-DDE shows much lower PAPR than OTFS even though they achieve comparable coded BER performance.

相關內容

For models consisting of a classifier in some representation space, learning online from a non-stationary data stream often necessitates changes in the representation. So, the question arises of what is the best way to adapt the classifier to shifts in representation. Current methods only slowly change the classifier to representation shift, introducing noise into learning as the classifier is misaligned to the representation. We propose DeepCCG, an empirical Bayesian approach to solve this problem. DeepCCG works by updating the posterior of a class conditional Gaussian classifier such that the classifier adapts in one step to representation shift. The use of a class conditional Gaussian classifier also enables DeepCCG to use a log conditional marginal likelihood loss to update the representation. To perform the update to the classifier and representation, DeepCCG maintains a fixed number of examples in memory and so a key part of DeepCCG is selecting what examples to store, choosing the subset that minimises the KL divergence between the true posterior and the posterior induced by the subset. We explore the behaviour of DeepCCG in online continual learning (CL), demonstrating that it performs well against a spectrum of online CL methods and that it reduces the change in performance due to representation shift.

Efficient Reduce and AllReduce communication collectives are a critical cornerstone of high-performance computing (HPC) applications. We present the first systematic investigation of Reduce and AllReduce on the Cerebras Wafer-Scale Engine (WSE). This architecture has been shown to achieve unprecedented performance both for machine learning workloads and other computational problems like FFT. We introduce a performance model to estimate the execution time of algorithms on the WSE and validate our predictions experimentally for a wide range of input sizes. In addition to existing implementations, we design and implement several new algorithms specifically tailored to the architecture. Moreover, we establish a lower bound for the runtime of a Reduce operation on the WSE. Based on our model, we automatically generate code that achieves near-optimal performance across the whole range of input sizes. Experiments demonstrate that our new Reduce and AllReduce algorithms outperform the current vendor solution by up to 3.27x. Additionally, our model predicts performance with less than 4% error. The proposed communication collectives increase the range of HPC applications that can benefit from the high throughput of the WSE. Our model-driven methodology demonstrates a disciplined approach that can lead the way to further algorithmic advancements on wafer-scale architectures.

Contemporary accelerator designs exhibit a high degree of spatial localization, wherein two-dimensional physical distance determines communication costs between processing elements. This situation presents considerable algorithmic challenges, particularly when managing sparse data, a pivotal component in progressing data science. The spatial computer model quantifies communication locality by weighting processor communication costs by distance, introducing a term named energy. Moreover, it integrates depth, a widely-utilized metric, to promote high parallelism. We propose and analyze a framework for efficient spatial tree algorithms within the spatial computer model. Our primary method constructs a spatial tree layout that optimizes the locality of the neighbors in the compute grid. This approach thereby enables locality-optimized messaging within the tree. Our layout achieves a polynomial factor improvement in energy compared to utilizing a PRAM approach. Using this layout, we develop energy-efficient treefix sum and lowest common ancestor algorithms, which are both fundamental building blocks for other graph algorithms. With high probability, our algorithms exhibit near-linear energy and poly-logarithmic depth. Our contributions augment a growing body of work demonstrating that computations can have both high spatial locality and low depth. Moreover, our work constitutes an advancement in the spatial layout of irregular and sparse computations.

Where dual-numbers forward-mode automatic differentiation (AD) pairs each scalar value with its tangent value, dual-numbers reverse-mode AD attempts to achieve reverse AD using a similarly simple idea: by pairing each scalar value with a backpropagator function. Its correctness and efficiency on higher-order input languages have been analysed by Brunel, Mazza and Pagani, but this analysis used a custom operational semantics for which it is unclear whether it can be implemented efficiently. We take inspiration from their use of linear factoring to optimise dual-numbers reverse-mode AD to an algorithm that has the correct complexity and enjoys an efficient implementation in a standard functional language with support for mutable arrays, such as Haskell. Aside from the linear factoring ingredient, our optimisation steps consist of well-known ideas from the functional programming community. We demonstrate the use of our technique by providing a practical implementation that differentiates most of Haskell98. Where previous work on dual numbers reverse AD has required sequentialisation to construct the reverse pass, we demonstrate that we can apply our technique to task-parallel source programs and generate a task-parallel derivative computation.

A double self-sustainable reconfigurable intelligent surfaces (RISs) assisted multi-user multiple input multiple output (MIMO) system is investigated. Two RISs are equipped with energy harvesting circuit to achieve self-sustainable transmission. The aim is to minimize the transmission power at the base station (BS), while guaranteeing the quality of service (QoS) requirements of the users and meeting the power consumption requirements of the RISs. A block coordinate descent (BCD) algorithm based on the penalty-based method and successive convex approximation (SCA) is employed to alternatively optimize the active beamforming at the BS and the phase shifts, as well as amplitude coefficients of two RISs. Simulation results show that the required power consumption at the BS for the proposed double self-sustainable RISs system is significantly reduced compared to conventional RIS systems.

Multi-intent natural language understanding (NLU) presents a formidable challenge due to the model confusion arising from multiple intents within a single utterance. While previous works train the model contrastively to increase the margin between different multi-intent labels, they are less suited to the nuances of multi-intent NLU. They ignore the rich information between the shared intents, which is beneficial to constructing a better embedding space, especially in low-data scenarios. We introduce a two-stage Prediction-Aware Contrastive Learning (PACL) framework for multi-intent NLU to harness this valuable knowledge. Our approach capitalizes on shared intent information by integrating word-level pre-training and prediction-aware contrastive fine-tuning. We construct a pre-training dataset using a word-level data augmentation strategy. Subsequently, our framework dynamically assigns roles to instances during contrastive fine-tuning while introducing a prediction-aware contrastive loss to maximize the impact of contrastive learning. We present experimental results and empirical analysis conducted on three widely used datasets, demonstrating that our method surpasses the performance of three prominent baselines on both low-data and full-data scenarios.

As control-flow protection gets widely deployed, it is difficult for attackers to corrupt control-data and achieve control-flow hijacking. Instead, data-oriented attacks, which manipulate non-control data, have been demonstrated to be feasible and powerful. In data-oriented attacks, a fundamental step is to identify non-control, security-critical data. However, critical data identification processes are not scalable in previous works, because they mainly rely on tedious human efforts to identify critical data. To address this issue, we propose a novel approach that combines traditional program analysis with deep learning. At a higher level, by examining how analysts identify critical data, we first propose dynamic analysis algorithms to identify the program semantics (and features) that are correlated with the impact of a critical data. Then, motivated by the unique challenges in the critical data identification task, we formalize the distinguishing features and use customized program dependence graphs (PDG) to embed the features. Different from previous works using deep learning to learn basic program semantics, this paper adopts a special neural network architecture that can capture the long dependency paths (in the PDG), through which a critical variable propagates its impact. We have implemented a fully-automatic toolchain and conducted comprehensive evaluations. According to the evaluations, our model can achieve 90% accuracy. The toolchain uncovers 80 potential critical variables in Google FuzzBench. In addition, we demonstrate the harmfulness of the exploits using the identified critical variables by simulating 7 data-oriented attacks through GDB.

We study the problem of few-shot graph classification across domains with nonequivalent feature spaces by introducing three new cross-domain benchmarks constructed from publicly available datasets. We also propose an attention-based graph encoder that uses three congruent views of graphs, one contextual and two topological views, to learn representations of task-specific information for fast adaptation, and task-agnostic information for knowledge transfer. We run exhaustive experiments to evaluate the performance of contrastive and meta-learning strategies. We show that when coupled with metric-based meta-learning frameworks, the proposed encoder achieves the best average meta-test classification accuracy across all benchmarks. The source code and data will be released here: //github.com/kavehhassani/metagrl

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Image-to-image translation aims to learn the mapping between two visual domains. There are two main challenges for many applications: 1) the lack of aligned training pairs and 2) multiple possible outputs from a single input image. In this work, we present an approach based on disentangled representation for producing diverse outputs without paired training images. To achieve diversity, we propose to embed images onto two spaces: a domain-invariant content space capturing shared information across domains and a domain-specific attribute space. Our model takes the encoded content features extracted from a given input and the attribute vectors sampled from the attribute space to produce diverse outputs at test time. To handle unpaired training data, we introduce a novel cross-cycle consistency loss based on disentangled representations. Qualitative results show that our model can generate diverse and realistic images on a wide range of tasks without paired training data. For quantitative comparisons, we measure realism with user study and diversity with a perceptual distance metric. We apply the proposed model to domain adaptation and show competitive performance when compared to the state-of-the-art on the MNIST-M and the LineMod datasets.

北京阿比特科技有限公司