亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we show that the halfspace depth random variable for samples from a univariate distribution with a notion of center is distributed as a uniform distribution on the interval [0,1/2]. The simplicial depth random variable has a distribution that first-order stochastic dominates that of the halfspace depth random variable and relates to a Beta distribution. Depth-induced divergences between two univariate distributions can be defined using divergences on the distributions for the statistical depth random variables in-between these two distributions. We discuss the properties of such induced divergences, particularly the depth-induced TVD distance based on halfspace or simplicial depth functions, and how empirical two-sample estimators benefit from such transformations.

相關內容

We present a distribution optimization framework that significantly improves confidence bounds for various risk measures compared to previous methods. Our framework encompasses popular risk measures such as the entropic risk measure, conditional value at risk (CVaR), spectral risk measure, distortion risk measure, equivalent certainty, and rank-dependent expected utility, which are well established in risk-sensitive decision-making literature. To achieve this, we introduce two estimation schemes based on concentration bounds derived from the empirical distribution, specifically using either the Wasserstein distance or the supremum distance. Unlike traditional approaches that add or subtract a confidence radius from the empirical risk measures, our proposed schemes evaluate a specific transformation of the empirical distribution based on the distance. Consequently, our confidence bounds consistently yield tighter results compared to previous methods. We further verify the efficacy of the proposed framework by providing tighter problem-dependent regret bound for the CVaR bandit.

Conducting valid statistical analyses is challenging in the presence of missing-not-at-random (MNAR) data, where the missingness mechanism is dependent on the missing values themselves even conditioned on the observed data. Here, we consider a MNAR model that generalizes several prior popular MNAR models in two ways: first, it is less restrictive in terms of statistical independence assumptions imposed on the underlying joint data distribution, and second, it allows for all variables in the observed sample to have missing values. This MNAR model corresponds to a so-called criss-cross structure considered in the literature on graphical models of missing data that prevents nonparametric identification of the entire missing data model. Nonetheless, part of the complete-data distribution remains nonparametrically identifiable. By exploiting this fact and considering a rich class of exponential family distributions, we establish sufficient conditions for identification of the complete-data distribution as well as the entire missingness mechanism. We then propose methods for testing the independence restrictions encoded in such models using odds ratio as our parameter of interest. We adopt two semiparametric approaches for estimating the odds ratio parameter and establish the corresponding asymptotic theories: one involves maximizing a conditional likelihood with order statistics and the other uses estimating equations. The utility of our methods is illustrated via simulation studies.

In this paper, we study the estimation of the derivative of a regression function in a standard univariate regression model. The estimators are defined either by derivating nonparametric least-squares estimators of the regression function or by estimating the projection of the derivative. We prove two simple risk bounds allowing to compare our estimators. More elaborate bounds under a stability assumption are then provided. Bases and spaces on which we can illustrate our assumptions and first results are both of compact or non compact type, and we discuss the rates reached by our estimators. They turn out to be optimal in the compact case. Lastly, we propose a model selection procedure and prove the associated risk bound. To consider bases with a non compact support makes the problem difficult.

We investigate a class of models for non-parametric estimation of probability density fields based on scattered samples of heterogeneous sizes. The considered SLGP models are Spatial extensions of Logistic Gaussian Process models and inherit some of their theoretical properties but also of their computational challenges. We introduce SLGPs from the perspective of random measures and their densities, and investigate links between properties of SLGPs and underlying processes. Our inquiries are motivated by SLGP's abilities to deliver probabilistic predictions of conditional distributions at candidate points, to allow (approximate) conditional simulations of probability densities, and to jointly predict multiple functionals of target distributions. We show that SLGP models induced by continuous GPs can be characterized by the joint Gaussianity of their log-increments and leverage this characterization to establish theoretical results pertaining to spatial regularity. We extend the notion of mean-square continuity to random measure fields and establish sufficient conditions on covariance kernels underlying SLGPs for associated models to enjoy such regularity properties. From the practical side, we propose an implementation relying on Random Fourier Features and demonstrate its applicability on synthetic examples and on temperature distributions at meteorological stations, including probabilistic predictions of densities at left-out stations.

We present a new approach to semiparametric inference using corrected posterior distributions. The method allows us to leverage the adaptivity, regularization and predictive power of nonparametric Bayesian procedures to estimate low-dimensional functionals of interest without being restricted by the holistic Bayesian formalism. Starting from a conventional nonparametric posterior, we target the functional of interest by transforming the entire distribution with a Bayesian bootstrap correction. We provide conditions for the resulting $\textit{one-step posterior}$ to possess calibrated frequentist properties and specialize the results for several canonical examples: the integrated squared density, the mean of a missing-at-random outcome, and the average causal treatment effect on the treated. The procedure is computationally attractive, requiring only a simple, efficient post-processing step that can be attached onto any arbitrary posterior sampling algorithm. Using the ACIC 2016 causal data analysis competition, we illustrate that our approach can outperform the existing state-of-the-art through the propagation of Bayesian uncertainty.

We consider the problem of solving linear least squares problems in a framework where only evaluations of the linear map are possible. We derive randomized methods that do not need any other matrix operations than forward evaluations, especially no evaluation of the adjoint map is needed. Our method is motivated by the simple observation that one can get an unbiased estimate of the application of the adjoint. We show convergence of the method and then derive a more efficient method that uses an exact linesearch. This method, called random descent, resembles known methods in other context and has the randomized coordinate descent method as special case. We provide convergence analysis of the random descent method emphasizing the dependence on the underlying distribution of the random vectors. Furthermore we investigate the applicability of the method in the context of ill-posed inverse problems and show that the method can have beneficial properties when the unknown solution is rough. We illustrate the theoretical findings in numerical examples. One particular result is that the random descent method actually outperforms established transposed-free methods (TFQMR and CGS) in examples.

Data transformations are essential for broad applicability of parametric regression models. However, for Bayesian analysis, joint inference of the transformation and model parameters typically involves restrictive parametric transformations or nonparametric representations that are computationally inefficient and cumbersome for implementation and theoretical analysis, which limits their usability in practice. This paper introduces a simple, general, and efficient strategy for joint posterior inference of an unknown transformation and all regression model parameters. The proposed approach directly targets the posterior distribution of the transformation by linking it with the marginal distributions of the independent and dependent variables, and then deploys a Bayesian nonparametric model via the Bayesian bootstrap. Crucially, this approach delivers (1) joint posterior consistency under general conditions, including multiple model misspecifications, and (2) efficient Monte Carlo (not Markov chain Monte Carlo) inference for the transformation and all parameters for important special cases. These tools apply across a variety of data domains, including real-valued, integer-valued, compactly-supported, and positive data. Simulation studies and an empirical application demonstrate the effectiveness and efficiency of this strategy for semiparametric Bayesian analysis with linear models, quantile regression, and Gaussian processes.

This paper presents a novel approach to Bayesian nonparametric spectral analysis of stationary multivariate time series. Starting with a parametric vector-autoregressive model, the parametric likelihood is nonparametrically adjusted in the frequency domain to account for potential deviations from parametric assumptions. We show mutual contiguity of the nonparametrically corrected likelihood, the multivariate Whittle likelihood approximation and the exact likelihood for Gaussian time series. A multivariate extension of the nonparametric Bernstein-Dirichlet process prior for univariate spectral densities to the space of Hermitian positive definite spectral density matrices is specified directly on the correction matrices. An infinite series representation of this prior is then used to develop a Markov chain Monte Carlo algorithm to sample from the posterior distribution. The code is made publicly available for ease of use and reproducibility. With this novel approach we provide a generalization of the multivariate Whittle-likelihood-based method of Meier et al. (2020) as well as an extension of the nonparametrically corrected likelihood for univariate stationary time series of Kirch et al. (2019) to the multivariate case. We demonstrate that the nonparametrically corrected likelihood combines the efficiencies of a parametric with the robustness of a nonparametric model. Its numerical accuracy is illustrated in a comprehensive simulation study. We illustrate its practical advantages by a spectral analysis of two environmental time series data sets: a bivariate time series of the Southern Oscillation Index and fish recruitment and time series of windspeed data at six locations in California.

Data depth has been applied as a nonparametric measurement for ranking multivariate samples. In this paper, we focus on homogeneity tests to assess whether two multivariate samples are from the same distribution. There are many data depth-based tests for this problem, but they may not be very powerful, or have unknown asymptotic distributions, or have slow convergence rates to asymptotic distributions. Given the recent development of data depth as an important measure in quality assurance, we propose three new test statistics for multivariate two-sample homogeneity tests. The proposed minimum test statistics have simple asymptotic half-normal distribution. We also discuss the generalization of the proposed tests to multiple samples. The simulation study demonstrates the superior performance of the proposed tests. The test procedure is illustrated by two real data examples.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

北京阿比特科技有限公司