亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we make the explicit connection between image segmentation methods and end-to-end diarization methods. From these insights, we propose a novel, fully end-to-end diarization model, EEND-M2F, based on the Mask2Former architecture. Speaker representations are computed in parallel using a stack of transformer decoders, in which irrelevant frames are explicitly masked from the cross attention using predictions from previous layers. EEND-M2F is lightweight, efficient, and truly end-to-end, as it does not require any additional diarization, speaker verification, or segmentation models to run, nor does it require running any clustering algorithms. Our model achieves state-of-the-art performance on several public datasets, such as AMI, AliMeeting and RAMC. Most notably our DER of 16.07% on DIHARD-III is the first major improvement upon the challenge winning system.

相關內容

The Conformer has become the most popular encoder model for automatic speech recognition (ASR). It adds convolution modules to a transformer to learn both local and global dependencies. In this work we describe a faster, more memory-efficient, and better-performing transformer, called Zipformer. Modeling changes include: 1) a U-Net-like encoder structure where middle stacks operate at lower frame rates; 2) reorganized block structure with more modules, within which we re-use attention weights for efficiency; 3) a modified form of LayerNorm called BiasNorm allows us to retain some length information; 4) new activation functions SwooshR and SwooshL work better than Swish. We also propose a new optimizer, called ScaledAdam, which scales the update by each tensor's current scale to keep the relative change about the same, and also explictly learns the parameter scale. It achieves faster convergence and better performance than Adam. Extensive experiments on LibriSpeech, Aishell-1, and WenetSpeech datasets demonstrate the effectiveness of our proposed Zipformer over other state-of-the-art ASR models. Our code is publicly available at //github.com/k2-fsa/icefall.

Here, we examine a fully-discrete Semi-Lagrangian scheme for a mean-field game price formation model. We show that the discretization is monotone as a multivalued operator and prove the uniqueness of the discretized solution. Moreover, we show that the limit of the discretization converges to the weak solution of the continuous price formation mean-field game using monotonicity methods. This scheme performs substantially better than standard methods by giving reliable results within a few iterations, as several numerical simulations and comparisons at the end of the paper illustrate.

In this paper, we first present the character texture generation system \textit{Minecraft-ify}, specified to Minecraft video game toward in-game application. Ours can generate face-focused image for texture mapping tailored to 3D virtual character having cube manifold. While existing projects or works only generate texture, proposed system can inverse the user-provided real image, or generate average/random appearance from learned distribution. Moreover, it can be manipulated with text-guidance using StyleGAN and StyleCLIP. These features provide a more extended user experience with enlarged freedom as a user-friendly AI-tool. Project page can be found at //gh-bumsookim.github.io/Minecraft-ify/

In this paper, we introduce the problem of zero-shot text-guided exploration of the solutions to open-domain image super-resolution. Our goal is to allow users to explore diverse, semantically accurate reconstructions that preserve data consistency with the low-resolution inputs for different large downsampling factors without explicitly training for these specific degradations. We propose two approaches for zero-shot text-guided super-resolution - i) modifying the generative process of text-to-image \textit{T2I} diffusion models to promote consistency with low-resolution inputs, and ii) incorporating language guidance into zero-shot diffusion-based restoration methods. We show that the proposed approaches result in diverse solutions that match the semantic meaning provided by the text prompt while preserving data consistency with the degraded inputs. We evaluate the proposed baselines for the task of extreme super-resolution and demonstrate advantages in terms of restoration quality, diversity, and explorability of solutions.

Building scalable vision-language models to learn from diverse, multimodal data remains an open challenge. In this paper, we introduce an Efficient Vision-languagE foundation model, namely EVE, which is one unified multimodal Transformer pre-trained solely by one unified pre-training task. Specifically, EVE encodes both vision and language within a shared Transformer network integrated with modality-aware sparse Mixture-of-Experts (MoE) modules, which capture modality-specific information by selectively switching to different experts. To unify pre-training tasks of vision and language, EVE performs masked signal modeling on image-text pairs to reconstruct masked signals, i.e., image pixels and text tokens, given visible signals. This simple yet effective pre-training objective accelerates training by 3.5x compared to the model pre-trained with Image-Text Contrastive and Image-Text Matching losses. Owing to the combination of the unified architecture and pre-training task, EVE is easy to scale up, enabling better downstream performance with fewer resources and faster training speed. Despite its simplicity, EVE achieves state-of-the-art performance on various vision-language downstream tasks, including visual question answering, visual reasoning, and image-text retrieval.

Interlocking logics are at the core of critical systems controlling the traffic within stations. In this paper, we consider a generic interlocking logic, which can be instantiated to control a wide class of stations. We tackle the problem of parameterized verification, i.e. prove that the logic satisfies the required properties for all the relevant stations. We present a simplified case study, where the interlocking logic is directly encoded in Dafny. Then, we show how to automate the proof of an important safety requirement, by integrating simple, template-based invariants and more complex invariants obtained from a model checker for parameterized systems. Based on these positive preliminary results, we outline how we intend to integrate the approach by extending the IDE for the design of the interlocking logic.

This paper surveys vision-language pre-training (VLP) methods for multimodal intelligence that have been developed in the last few years. We group these approaches into three categories: ($i$) VLP for image-text tasks, such as image captioning, image-text retrieval, visual question answering, and visual grounding; ($ii$) VLP for core computer vision tasks, such as (open-set) image classification, object detection, and segmentation; and ($iii$) VLP for video-text tasks, such as video captioning, video-text retrieval, and video question answering. For each category, we present a comprehensive review of state-of-the-art methods, and discuss the progress that has been made and challenges still being faced, using specific systems and models as case studies. In addition, for each category, we discuss advanced topics being actively explored in the research community, such as big foundation models, unified modeling, in-context few-shot learning, knowledge, robustness, and computer vision in the wild, to name a few.

We present ResMLP, an architecture built entirely upon multi-layer perceptrons for image classification. It is a simple residual network that alternates (i) a linear layer in which image patches interact, independently and identically across channels, and (ii) a two-layer feed-forward network in which channels interact independently per patch. When trained with a modern training strategy using heavy data-augmentation and optionally distillation, it attains surprisingly good accuracy/complexity trade-offs on ImageNet. We will share our code based on the Timm library and pre-trained models.

In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The intra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).

In this paper, we focus on three problems in deep learning based medical image segmentation. Firstly, U-net, as a popular model for medical image segmentation, is difficult to train when convolutional layers increase even though a deeper network usually has a better generalization ability because of more learnable parameters. Secondly, the exponential ReLU (ELU), as an alternative of ReLU, is not much different from ReLU when the network of interest gets deep. Thirdly, the Dice loss, as one of the pervasive loss functions for medical image segmentation, is not effective when the prediction is close to ground truth and will cause oscillation during training. To address the aforementioned three problems, we propose and validate a deeper network that can fit medical image datasets that are usually small in the sample size. Meanwhile, we propose a new loss function to accelerate the learning process and a combination of different activation functions to improve the network performance. Our experimental results suggest that our network is comparable or superior to state-of-the-art methods.

北京阿比特科技有限公司