亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Despite the rapid development and great success of machine learning models, extensive studies have exposed their disadvantage of inheriting latent discrimination and societal bias from the training data. This phenomenon hinders their adoption on high-stake applications. Thus, many efforts have been taken for developing fair machine learning models. Most of them require that sensitive attributes are available during training to learn fair models. However, in many real-world applications, it is usually infeasible to obtain the sensitive attributes due to privacy or legal issues, which challenges existing fair-ensuring strategies. Though the sensitive attribute of each data sample is unknown, we observe that there are usually some non-sensitive features in the training data that are highly correlated with sensitive attributes, which can be used to alleviate the bias. Therefore, in this paper, we study a novel problem of exploring features that are highly correlated with sensitive attributes for learning fair and accurate classifiers. We theoretically show that by minimizing the correlation between these related features and model prediction, we can learn a fair classifier. Based on this motivation, we propose a novel framework which simultaneously uses these related features for accurate prediction and enforces fairness. In addition, the model can dynamically adjust the regularization weight of each related feature to balance its contribution on model classification and fairness. Experimental results on real-world datasets demonstrate the effectiveness of the proposed model for learning fair models with high classification accuracy.

相關內容

In this paper, we propose a novel mutual consistency network (MC-Net+) to effectively exploit the unlabeled data for semi-supervised medical image segmentation. The MC-Net+ model is motivated by the observation that deep models trained with limited annotations are prone to output highly uncertain and easily mis-classified predictions in ambiguous regions (e.g., adhesive edges or thin branches) for medical image segmentation. Leveraging these region-level challenging samples can make the semi-supervised segmentation model training more effective. Therefore, our proposed MC-Net+ model consists of two new designs. First, the model contains one shared encoder and multiple slightly different decoders (i.e., using different up-sampling strategies). The statistical discrepancy of multiple decoders' outputs is computed to denote the model's uncertainty, which indicates the unlabeled hard regions. Second, we apply a novel mutual consistency constraint between one decoder's probability output and other decoders' soft pseudo labels. In this way, we minimize the discrepancy of multiple outputs (i.e., the model uncertainty) during training and force the model to generate invariant results in such challenging regions, aiming at capturing more useful features. We compared the segmentation results of our MC-Net+ with five state-of-the-art semi-supervised approaches on three public medical datasets. Extension experiments with two common semi-supervised settings demonstrate the superior performance of our model over other existing methods, which sets a new state of the art for semi-supervised medical image segmentation.

Common tasks encountered in epidemiology, including disease incidence estimation and causal inference, rely on predictive modeling. Constructing a predictive model can be thought of as learning a prediction function, i.e., a function that takes as input covariate data and outputs a predicted value. Many strategies for learning these functions from data are available, from parametric regressions to machine learning algorithms. It can be challenging to choose an approach, as it is impossible to know in advance which one is the most suitable for a particular dataset and prediction task at hand. The super learner (SL) is an algorithm that alleviates concerns over selecting the one "right" strategy while providing the freedom to consider many of them, such as those recommended by collaborators, used in related research, or specified by subject-matter experts. It is an entirely pre-specified and data-adaptive strategy for predictive modeling. To ensure the SL is well-specified for learning the prediction function, the analyst does need to make a few important choices. In this Education Corner article, we provide step-by-step guidelines for making these choices, walking the reader through each of them and providing intuition along the way. In doing so, we aim to empower the analyst to tailor the SL specification to their prediction task, thereby ensuring their SL performs as well as possible. A flowchart provides a concise, easy-to-follow summary of key suggestions and heuristics, based on our accumulated experience, and guided by theory.

Data collection and research methodology represents a critical part of the research pipeline. On the one hand, it is important that we collect data in a way that maximises the validity of what we are measuring, which may involve the use of long scales with many items. On the other hand, collecting a large number of items across multiple scales results in participant fatigue, and expensive and time consuming data collection. It is therefore important that we use the available resources optimally. In this work, we consider how a consideration for theory and the associated causal/structural model can help us to streamline data collection procedures by not wasting time collecting data for variables which are not causally critical for subsequent analysis. This not only saves time and enables us to redirect resources to attend to other variables which are more important, but also increases research transparency and the reliability of theory testing. In order to achieve this streamlined data collection, we leverage structural models, and Markov conditional independency structures implicit in these models to identify the substructures which are critical for answering a particular research question. In this work, we review the relevant concepts and present a number of didactic examples with the hope that psychologists can use these techniques to streamline their data collection process without invalidating the subsequent analysis. We provide a number of simulation results to demonstrate the limited analytical impact of this streamlining.

Contrastive learning has led to substantial improvements in the quality of learned embedding representations for tasks such as image classification. However, a key drawback of existing contrastive augmentation methods is that they may lead to the modification of the image content which can yield undesired alterations of its semantics. This can affect the performance of the model on downstream tasks. Hence, in this paper, we ask whether we can augment image data in contrastive learning such that the task-relevant semantic content of an image is preserved. For this purpose, we propose to leverage saliency-based explanation methods to create content-preserving masked augmentations for contrastive learning. Our novel explanation-driven supervised contrastive learning (ExCon) methodology critically serves the dual goals of encouraging nearby image embeddings to have similar content and explanation. To quantify the impact of ExCon, we conduct experiments on the CIFAR-100 and the Tiny ImageNet datasets. We demonstrate that ExCon outperforms vanilla supervised contrastive learning in terms of classification, explanation quality, adversarial robustness as well as probabilistic calibration in the context of distributional shift.

Given the prevalence of large-scale graphs in real-world applications, the storage and time for training neural models have raised increasing concerns. To alleviate the concerns, we propose and study the problem of graph condensation for graph neural networks (GNNs). Specifically, we aim to condense the large, original graph into a small, synthetic and highly-informative graph, such that GNNs trained on the small graph and large graph have comparable performance. We approach the condensation problem by imitating the GNN training trajectory on the original graph through the optimization of a gradient matching loss and design a strategy to condense node futures and structural information simultaneously. Extensive experiments have demonstrated the effectiveness of the proposed framework in condensing different graph datasets into informative smaller graphs. In particular, we are able to approximate the original test accuracy by 95.3% on Reddit, 99.8% on Flickr and 99.0% on Citeseer, while reducing their graph size by more than 99.9%, and the condensed graphs can be used to train various GNN architectures.Code is released at //github.com/ChandlerBang/GCond.

In this paper, we investigate the problem of Semantic Segmentation for agricultural aerial imagery. We observe that the existing methods used for this task are designed without considering two characteristics of the aerial data: (i) the top-down perspective implies that the model cannot rely on a fixed semantic structure of the scene, because the same scene may be experienced with different rotations of the sensor; (ii) there can be a strong imbalance in the distribution of semantic classes because the relevant objects of the scene may appear at extremely different scales (e.g., a field of crops and a small vehicle). We propose a solution to these problems based on two ideas: (i) we use together a set of suitable augmentation and a consistency loss to guide the model to learn semantic representations that are invariant to the photometric and geometric shifts typical of the top-down perspective (Augmentation Invariance); (ii) we use a sampling method (Adaptive Sampling) that selects the training images based on a measure of pixel-wise distribution of classes and actual network confidence. With an extensive set of experiments conducted on the Agriculture-Vision dataset, we demonstrate that our proposed strategies improve the performance of the current state-of-the-art method.

Recently, the enactment of privacy regulations has promoted the rise of the machine unlearning paradigm. Existing studies of machine unlearning mainly focus on sample-wise unlearning, such that a learnt model will not expose user's privacy at the sample level. Yet we argue that such ability of selective removal should also be presented at the attribute level, especially for the attributes irrelevant to the main task, e.g., whether a person recognized in a face recognition system wears glasses or the age range of that person. Through a comprehensive literature review, it is found that existing studies on attribute-related problems like fairness and de-biasing learning cannot address the above concerns properly. To bridge this gap, we propose a paradigm of selectively removing input attributes from feature representations which we name `attribute unlearning'. In this paradigm, certain attributes will be accurately captured and detached from the learned feature representations at the stage of training, according to their mutual information. The particular attributes will be progressively eliminated along with the training procedure towards convergence, while the rest of attributes related to the main task are preserved for achieving competitive model performance. Considering the computational complexity during the training process, we not only give a theoretically approximate training method, but also propose an acceleration scheme to speed up the training process. We validate our method by spanning several datasets and models and demonstrate that our design can preserve model fidelity and reach prevailing unlearning efficacy with high efficiency. The proposed unlearning paradigm builds a foundation for future machine unlearning system and will become an essential component of the latest privacy-related legislation.

Federated learning (FL) is a distributed machine learning paradigm in which the server periodically aggregates local model parameters from clients without assembling their private data. Constrained communication and personalization requirements pose severe challenges to FL. Federated distillation (FD) is proposed to simultaneously address the above two problems, which exchanges knowledge between the server and clients, supporting heterogeneous local models while significantly reducing communication overhead. However, most existing FD methods require a proxy dataset, which is often unavailable in reality. A few recent proxy-data-free FD approaches can eliminate the need for additional public data, but suffer from remarkable discrepancy among local knowledge due to model heterogeneity, leading to ambiguous representation on the server and inevitable accuracy degradation. To tackle this issue, we propose a proxy-data-free FD algorithm based on distributed knowledge congruence (FedDKC). FedDKC leverages well-designed refinement strategies to narrow local knowledge differences into an acceptable upper bound, so as to mitigate the negative effects of knowledge incongruence. Specifically, from perspectives of peak probability and Shannon entropy of local knowledge, we design kernel-based knowledge refinement (KKR) and searching-based knowledge refinement (SKR) respectively, and theoretically guarantee that the refined-local knowledge can satisfy an approximately-similar distribution and be regarded as congruent. Extensive experiments conducted on three common datasets demonstrate that our proposed FedDKC significantly outperforms the state-of-the-art (accuracy boosts in 93.33% comparisons, Top-1 accuracy boosts by up to 4.38%, and Top-5 accuracy boosts by up to 10.31%) on various heterogeneous settings while evidently improving the convergence speed.

Humans have a natural instinct to identify unknown object instances in their environments. The intrinsic curiosity about these unknown instances aids in learning about them, when the corresponding knowledge is eventually available. This motivates us to propose a novel computer vision problem called: `Open World Object Detection', where a model is tasked to: 1) identify objects that have not been introduced to it as `unknown', without explicit supervision to do so, and 2) incrementally learn these identified unknown categories without forgetting previously learned classes, when the corresponding labels are progressively received. We formulate the problem, introduce a strong evaluation protocol and provide a novel solution, which we call ORE: Open World Object Detector, based on contrastive clustering and energy based unknown identification. Our experimental evaluation and ablation studies analyze the efficacy of ORE in achieving Open World objectives. As an interesting by-product, we find that identifying and characterizing unknown instances helps to reduce confusion in an incremental object detection setting, where we achieve state-of-the-art performance, with no extra methodological effort. We hope that our work will attract further research into this newly identified, yet crucial research direction.

High spectral dimensionality and the shortage of annotations make hyperspectral image (HSI) classification a challenging problem. Recent studies suggest that convolutional neural networks can learn discriminative spatial features, which play a paramount role in HSI interpretation. However, most of these methods ignore the distinctive spectral-spatial characteristic of hyperspectral data. In addition, a large amount of unlabeled data remains an unexploited gold mine for efficient data use. Therefore, we proposed an integration of generative adversarial networks (GANs) and probabilistic graphical models for HSI classification. Specifically, we used a spectral-spatial generator and a discriminator to identify land cover categories of hyperspectral cubes. Moreover, to take advantage of a large amount of unlabeled data, we adopted a conditional random field to refine the preliminary classification results generated by GANs. Experimental results obtained using two commonly studied datasets demonstrate that the proposed framework achieved encouraging classification accuracy using a small number of data for training.

北京阿比特科技有限公司