亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider a quantum and classical version multi-party function computation problem with $n$ players, where players $2, \dots, n$ need to communicate appropriate information to player 1, so that a ``generalized'' inner product function with an appropriate promise can be calculated. The communication complexity of a protocol is the total number of bits that need to be communicated. When $n$ is prime and for our chosen function, we exhibit a quantum protocol (with complexity $(n-1) \log n$ bits) and a classical protocol (with complexity $(n-1)^2 (\log n^2$) bits). In the quantum protocol, the players have access to entangled qudits but the communication is still classical. Furthermore, we present an integer linear programming formulation for determining a lower bound on the classical communication complexity. This demonstrates that our quantum protocol is strictly better than classical protocols.

相關內容

We present two new positive results for reliable computation using formulas over physical alphabets of size $q > 2$. First, we show that for logical alphabets of size $\ell = q$ the threshold for denoising using gates subject to $q$-ary symmetric noise with error probability $\epsilon$ is strictly larger that possible for Boolean computation and we demonstrate a clone of $q$-ary functions that can be reliably computed up to this threshold. Secondly, we provide an example where $\ell < q$, showing that reliable Boolean computation can be performed using $2$-input ternary logic gates subject to symmetric ternary noise of strength $\epsilon < 1/6$ by using the additional alphabet element for error signalling.

This paper is concerned with the optimal allocation of detection resources (sensors) to mitigate multi-stage attacks, in the presence of the defender's uncertainty in the attacker's intention. We model the attack planning problem using a Markov decision process and characterize the uncertainty in the attacker's intention using a finite set of reward functions -- each reward represents a type of the attacker. Based on this modeling framework, we employ the paradigm of the worst-case absolute regret minimization from robust game theory and develop mixed-integer linear program (MILP) formulations for solving the worst-case regret minimizing sensor allocation strategies for two classes of attack-defend interactions: one where the defender and attacker engage in a zero-sum game, and another where they engage in a non-zero-sum game. We demonstrate the effectiveness of our framework using a stochastic gridworld example.

State transformation problems such as compressing quantum information or breaking quantum commitments are fundamental quantum tasks. However, their computational difficulty cannot easily be characterized using traditional complexity theory, which focuses on tasks with classical inputs and outputs. To study the complexity of such state transformation tasks, we introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes. We use this framework to study the complexity of transforming one entangled state into another via local operations. We formalize this as the Uhlmann Transformation Problem, an algorithmic version of Uhlmann's theorem. Then, we prove structural results relating the complexity of the Uhlmann Transformation Problem, polynomial space quantum computation, and zero knowledge protocols. The Uhlmann Transformation Problem allows us to characterize the complexity of a variety of tasks in quantum information processing, including decoding noisy quantum channels, breaking falsifiable quantum cryptographic assumptions, implementing optimal prover strategies in quantum interactive proofs, and decoding the Hawking radiation of black holes. Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.

We focus on decentralized stochastic non-convex optimization, where $n$ agents work together to optimize a composite objective function which is a sum of a smooth term and a non-smooth convex term. To solve this problem, we propose two single-time scale algorithms: Prox-DASA and Prox-DASA-GT. These algorithms can find $\epsilon$-stationary points in $\mathcal{O}(n^{-1}\epsilon^{-2})$ iterations using constant batch sizes (i.e., $\mathcal{O}(1)$). Unlike prior work, our algorithms achieve comparable complexity without requiring large batch sizes, more complex per-iteration operations (such as double loops), or stronger assumptions. Our theoretical findings are supported by extensive numerical experiments, which demonstrate the superiority of our algorithms over previous approaches. Our code is available at //github.com/xuxingc/ProxDASA.

Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a \emph{surprising and counter-intuitive result}: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.

The approximate stabilizer rank of a quantum state is the minimum number of terms in any approximate decomposition of that state into stabilizer states. Bravyi and Gosset showed that the approximate stabilizer rank of a so-called "magic" state like $|T\rangle^{\otimes n}$, up to polynomial factors, is an upper bound on the number of classical operations required to simulate an arbitrary quantum circuit with Clifford gates and $n$ number of $T$ gates. As a result, an exponential lower bound on this quantity seems inevitable. Despite this intuition, several attempts using various techniques could not lead to a better than a linear lower bound on the "exact" rank of ${|T\rangle}^{\otimes n}$, meaning the minimal size of a decomposition that exactly produces the state. For the "approximate" rank, which is more realistically related to the cost of simulating quantum circuits, no lower bound better than $\tilde \Omega(\sqrt n)$ has been known. In this paper, we improve the lower bound on the approximate rank to $\tilde \Omega (n^2)$ for a wide range of the approximation parameters. An immediate corollary of our result is the existence of polynomial time computable functions which require a super-linear number of terms in any decomposition into exponentials of quadratic forms over $\mathbb{F}_2$, resolving a question in [Wil18]. Our approach is based on a strong lower bound on the approximate rank of a quantum state sampled from the Haar measure, a step-by-step analysis of the approximate rank of a magic-state teleportation protocol to sample from the Haar measure, and a result about trading Clifford operations with $T$ gates by [LKS18].

Secure multiparty computation (MPC) on incomplete communication networks has been studied within two primary models: (1) Where a partial network is fixed a priori, and thus corruptions can occur dependent on its structure, and (2) Where edges in the communication graph are determined dynamically as part of the protocol. Whereas a rich literature has succeeded in mapping out the feasibility and limitations of graph structures supporting secure computation in the fixed-graph model (including strong classical lower bounds), these bounds do not apply in the latter dynamic-graph setting, which has recently seen exciting new results, but remains relatively unexplored. In this work, we initiate a similar foundational study of MPC within the dynamic-graph model. As a first step, we investigate the property of graph expansion. All existing protocols (implicitly or explicitly) yield communication graphs which are expanders, but it is not clear whether this is inherent. Our results consist of two types (for constant fraction of corruptions): * Upper bounds: We demonstrate secure protocols whose induced communication graphs are not expander graphs, within a wide range of settings (computational, information theoretic, with low locality, even with low locality and adaptive security), each assuming some form of input-independent setup. * Lower bounds: In the plain model (no setup) with adaptive corruptions, we demonstrate that for certain functionalities, no protocol can maintain a non-expanding communication graph against all adversarial strategies. Our lower bound relies only on protocol correctness (not privacy), and requires a surprisingly delicate argument. More generally, we provide a formal framework for analyzing the evolving communication graph of MPC protocols, giving a starting point for studying the relation between secure computation and further, more general graph properties.

In today's world, many technologically advanced countries have realized that real power lies not in physical strength but in educated minds. As a result, every country has embarked on restructuring its education system to meet the demands of technology. As a country in the midst of these developments, we cannot remain indifferent to this transformation in education. In the Information Age of the 21st century, rapid access to information is crucial for the development of individuals and societies. To take our place among the knowledge societies in a world moving rapidly towards globalization, we must closely follow technological innovations and meet the requirements of technology. This can be achieved by providing learning opportunities to anyone interested in acquiring education in their area of interest. This study focuses on the advantages and disadvantages of internet-based learning compared to traditional teaching methods, the importance of computer usage in internet-based learning, negative factors affecting internet-based learning, and the necessary recommendations for addressing these issues. In today's world, it is impossible to talk about education without technology or technology without education.

We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.

Effective multi-robot teams require the ability to move to goals in complex environments in order to address real-world applications such as search and rescue. Multi-robot teams should be able to operate in a completely decentralized manner, with individual robot team members being capable of acting without explicit communication between neighbors. In this paper, we propose a novel game theoretic model that enables decentralized and communication-free navigation to a goal position. Robots each play their own distributed game by estimating the behavior of their local teammates in order to identify behaviors that move them in the direction of the goal, while also avoiding obstacles and maintaining team cohesion without collisions. We prove theoretically that generated actions approach a Nash equilibrium, which also corresponds to an optimal strategy identified for each robot. We show through extensive simulations that our approach enables decentralized and communication-free navigation by a multi-robot system to a goal position, and is able to avoid obstacles and collisions, maintain connectivity, and respond robustly to sensor noise.

北京阿比特科技有限公司