This research addresses a new tool for data analysis known as Topological Data Analysis TDA It underlies an area of Mathematics known as Combinatorial Algebra or more recently Algebraic Topology which through making strong use of Computation Statistics Probability and Topology among other concepts extracts mathematical characteristics from a set of data that allow us associate create and infer general and quality information about them
Bayesian neural networks that incorporate data augmentation implicitly use a ``randomly perturbed log-likelihood [which] does not have a clean interpretation as a valid likelihood function'' (Izmailov et al. 2021). Here, we provide several approaches to developing principled Bayesian neural networks incorporating data augmentation. We introduce a ``finite orbit'' setting which allows likelihoods to be computed exactly, and give tight multi-sample bounds in the more usual ``full orbit'' setting. These models cast light on the origin of the cold posterior effect. In particular, we find that the cold posterior effect persists even in these principled models incorporating data augmentation. This suggests that the cold posterior effect cannot be dismissed as an artifact of data augmentation using incorrect likelihoods.
The ICH E9(R1) addendum (2019) proposed principal stratification (PS) as one of five strategies for dealing with intercurrent events. Therefore, understanding the strengths, limitations, and assumptions of PS is important for the broad community of clinical trialists. Many approaches have been developed under the general framework of PS in different areas of research, including experimental and observational studies. These diverse applications have utilized a diverse set of tools and assumptions. Thus, need exists to present these approaches in a unifying manner. The goal of this tutorial is threefold. First, we provide a coherent and unifying description of PS. Second, we emphasize that estimation of effects within PS relies on strong assumptions and we thoroughly examine the consequences of these assumptions to understand in which situations certain assumptions are reasonable. Finally, we provide an overview of a variety of key methods for PS analysis and use a real clinical trial example to illustrate them. Examples of code for implementation of some of these approaches are given in supplemental materials.
Neural field models are nonlinear integro-differential equations for the evolution of neuronal activity, and they are a prototypical large-scale, coarse-grained neuronal model in continuum cortices. Neural fields are often simulated heuristically and, in spite of their popularity in mathematical neuroscience, their numerical analysis is not yet fully established. We introduce generic projection methods for neural fields, and derive a-priori error bounds for these schemes. We extend an existing framework for stationary integral equations to the time-dependent case, which is relevant for neuroscience applications. We find that the convergence rate of a projection scheme for a neural field is determined to a great extent by the convergence rate of the projection operator. This abstract analysis, which unifies the treatment of collocation and Galerkin schemes, is carried out in operator form, without resorting to quadrature rules for the integral term, which are introduced only at a later stage, and whose choice is enslaved by the choice of the projector. Using an elementary timestepper as an example, we demonstrate that the error in a time stepper has two separate contributions: one from the projector, and one from the time discretisation. We give examples of concrete projection methods: two collocation schemes (piecewise-linear and spectral collocation) and two Galerkin schemes (finite elements and spectral Galerkin); for each of them we derive error bounds from the general theory, introduce several discrete variants, provide implementation details, and present reproducible convergence tests.
Identifying the most influential nodes in information networks has been the focus of many research studies. This problem has crucial applications in various contexts including biology, medicine, and social science, such as controlling the propagation of viruses or rumours in real world networks. While existing methods mostly employ local neighbourhood features which heavily rely on the network structure and disregard the underlying diffusion dynamics, in this work we present a randomized sampling algorithm that not only takes into account the local and global structural features of the network but also considers the underlying diffusion dynamics and its parameters. The main idea is to compute the influentiality of a node through reachability from that node in a set of random graphs. We use a hyper-graph to capture the reachability from nodes in the original network, and theoretically argue that the hypergraph can be used to approximate the theoretical influentiality of nodes in the original graph with a factor of 1 - epsilon. The performance of the proposed model is also evaluated empirically by measuring the correlation between the ranking generated by the proposed method and the ground truth ranking. Our results show that the proposed method substantially outperforms state of the art methods and achieves the highest correlation with the ground-truth ranking, while the generated ranking has a high level of uniqueness and uniformity. Theoretical and practical analysis of the running time of the algorithm also confirms that the proposed method maintains a competitive running time in comparison to the state of the art methods.
We introduce a novel framework for the classification of functional data supported on non-linear, and possibly random, manifold domains. The motivating application is the identification of subjects with Alzheimer's disease from their cortical surface geometry and associated cortical thickness map. The proposed model is based upon a reformulation of the classification problem into a regularized multivariate functional linear regression model. This allows us to adopt a direct approach to the estimation of the most discriminant direction while controlling for its complexity with appropriate differential regularization. Our approach does not require prior estimation of the covariance structure of the functional predictors, which is computationally not feasible in our application setting. We provide a theoretical analysis of the out-of-sample prediction error of the proposed model and explore the finite sample performance in a simulation setting. We apply the proposed method to a pooled dataset from the Alzheimer's Disease Neuroimaging Initiative and the Parkinson's Progression Markers Initiative, and are able to estimate discriminant directions that capture both cortical geometric and thickness predictive features of Alzheimer's Disease, which are consistent with the existing neuroscience literature.
The class imbalance problem, as an important issue in learning node representations, has drawn increasing attention from the community. Although the imbalance considered by existing studies roots from the unequal quantity of labeled examples in different classes (quantity imbalance), we argue that graph data expose a unique source of imbalance from the asymmetric topological properties of the labeled nodes, i.e., labeled nodes are not equal in terms of their structural role in the graph (topology imbalance). In this work, we first probe the previously unknown topology-imbalance issue, including its characteristics, causes, and threats to semi-supervised node classification learning. We then provide a unified view to jointly analyzing the quantity- and topology- imbalance issues by considering the node influence shift phenomenon with the Label Propagation algorithm. In light of our analysis, we devise an influence conflict detection -- based metric Totoro to measure the degree of graph topology imbalance and propose a model-agnostic method ReNode to address the topology-imbalance issue by re-weighting the influence of labeled nodes adaptively based on their relative positions to class boundaries. Systematic experiments demonstrate the effectiveness and generalizability of our method in relieving topology-imbalance issue and promoting semi-supervised node classification. The further analysis unveils varied sensitivity of different graph neural networks (GNNs) to topology imbalance, which may serve as a new perspective in evaluating GNN architectures.
Drug Discovery is a fundamental and ever-evolving field of research. The design of new candidate molecules requires large amounts of time and money, and computational methods are being increasingly employed to cut these costs. Machine learning methods are ideal for the design of large amounts of potential new candidate molecules, which are naturally represented as graphs. Graph generation is being revolutionized by deep learning methods, and molecular generation is one of its most promising applications. In this paper, we introduce a sequential molecular graph generator based on a set of graph neural network modules, which we call MG^2N^2. At each step, a node or a group of nodes is added to the graph, along with its connections. The modular architecture simplifies the training procedure, also allowing an independent retraining of a single module. Sequentiality and modularity make the generation process interpretable. The use of graph neural networks maximizes the information in input at each generative step, which consists of the subgraph produced during the previous steps. Experiments of unconditional generation on the QM9 and Zinc datasets show that our model is capable of generalizing molecular patterns seen during the training phase, without overfitting. The results indicate that our method is competitive, and outperforms challenging baselines for unconditional generation.
Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.
The area of Data Analytics on graphs promises a paradigm shift as we approach information processing of classes of data, which are typically acquired on irregular but structured domains (social networks, various ad-hoc sensor networks). Yet, despite its long history, current approaches mostly focus on the optimization of graphs themselves, rather than on directly inferring learning strategies, such as detection, estimation, statistical and probabilistic inference, clustering and separation from signals and data acquired on graphs. To fill this void, we first revisit graph topologies from a Data Analytics point of view, and establish a taxonomy of graph networks through a linear algebraic formalism of graph topology (vertices, connections, directivity). This serves as a basis for spectral analysis of graphs, whereby the eigenvalues and eigenvectors of graph Laplacian and adjacency matrices are shown to convey physical meaning related to both graph topology and higher-order graph properties, such as cuts, walks, paths, and neighborhoods. Next, to illustrate estimation strategies performed on graph signals, spectral analysis of graphs is introduced through eigenanalysis of mathematical descriptors of graphs and in a generic way. Finally, a framework for vertex clustering and graph segmentation is established based on graph spectral representation (eigenanalysis) which illustrates the power of graphs in various data association tasks. The supporting examples demonstrate the promise of Graph Data Analytics in modeling structural and functional/semantic inferences. At the same time, Part I serves as a basis for Part II and Part III which deal with theory, methods and applications of processing Data on Graphs and Graph Topology Learning from data.
Lots of learning tasks require dealing with graph data which contains rich relation information among elements. Modeling physics system, learning molecular fingerprints, predicting protein interface, and classifying diseases require a model to learn from graph inputs. In other domains such as learning from non-structural data like texts and images, reasoning on extracted structures, like the dependency tree of sentences and the scene graph of images, is an important research topic which also needs graph reasoning models. Graph neural networks (GNNs) are connectionist models that capture the dependence of graphs via message passing between the nodes of graphs. Unlike standard neural networks, graph neural networks retain a state that can represent information from its neighborhood with arbitrary depth. Although the primitive GNNs have been found difficult to train for a fixed point, recent advances in network architectures, optimization techniques, and parallel computation have enabled successful learning with them. In recent years, systems based on variants of graph neural networks such as graph convolutional network (GCN), graph attention network (GAT), gated graph neural network (GGNN) have demonstrated ground-breaking performance on many tasks mentioned above. In this survey, we provide a detailed review over existing graph neural network models, systematically categorize the applications, and propose four open problems for future research.