亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We perform detailed theoretical analysis of an expectation-maximization-based algorithm recently proposed in for solving a variation of the 3D registration problem, named multi-model 3D registration. Despite having shown superior empirical results, did not theoretically justify the conditions under which the EM approach converges to the ground truth. In this project, we aim to close this gap by establishing such conditions. In particular, the analysis revolves around the usage of probabilistic tail bounds that are developed and applied in various instances throughout the course. The problem studied in this project stands as another example, different from those seen in the course, in which tail-bounds help advance our algorithmic understanding in a probabilistic way. We provide self-contained background materials on 3D Registration

相關內容

Machine Learning-based heuristics have recently shown impressive performance in solving a variety of hard combinatorial optimization problems (COPs). However they generally rely on a separate neural model, specialized and trained for each single problem. Any variation of a problem requires adjustment of its model and re-training from scratch. In this paper, we propose GOAL (for Generalist combinatorial Optimization Agent Learning), a generalist model capable of efficiently solving multiple COPs and which can be fine-tuned to solve new COPs. GOAL consists of a single backbone plus light-weight problem-specific adapters, mostly for input and output processing. The backbone is based on a new form of mixed-attention blocks which allows to handle problems defined on graphs with arbitrary combinations of node, edge and instance-level features. Additionally, problems which involve heterogeneous nodes or edges, such as in multi-partite graphs, are handled through a novel multi-type transformer architecture, where the attention blocks are duplicated to attend only the relevant combination of types while relying on the same shared parameters. We train GOAL on a set of routing, scheduling and classic graph problems and show that it is only slightly inferior to the specialized baselines while being the first multi-task model that solves a variety of COPs. Finally, we showcase the strong transfer learning capacity of GOAL by fine-tuning or learning the adapters for new problems, with only few shots and little data.

Mixed Boolean-Arithmetic (MBA) obfuscation is a common technique used to transform simple expressions into semantically equivalent but more complex combinations of boolean and arithmetic operators. Its widespread usage in DRM systems, malware, and software protectors is well documented. In 2021, Liu et al. proposed a groundbreaking method of simplifying linear MBAs, utilizing a hidden two-way transformation between 1-bit and n-bit variables. In 2022, Reichenwallner et al. proposed a similar but more effective method of simplifying linear MBAs, SiMBA, relying on a similar but more involved theorem. However, because current linear MBA simplifiers operate in 1-bit space, they cannot handle expressions which utilize constants inside of their bitwise operands, e.g. (x&1), (x&1111) + (y&1111). We propose an extension to SiMBA that enables simplification of this broader class of expressions. It surpasses peer tools, achieving efficient simplification of a class of MBAs that current simplifiers struggle with.

When analysing Differentially Private (DP) machine learning pipelines, the potential privacy cost of data-dependent pre-processing is frequently overlooked in privacy accounting. In this work, we propose a general framework to evaluate the additional privacy cost incurred by non-private data-dependent pre-processing algorithms. Our framework establishes upper bounds on the overall privacy guarantees by utilising two new technical notions: a variant of DP termed Smooth DP and the bounded sensitivity of the pre-processing algorithms. In addition to the generic framework, we provide explicit overall privacy guarantees for multiple data-dependent pre-processing algorithms, such as data imputation, quantization, deduplication and PCA, when used in combination with several DP algorithms. Notably, this framework is also simple to implement, allowing direct integration into existing DP pipelines.

We present a novel approach of discretizing variable coefficient diffusion operators in the context of meshfree generalized finite difference methods. Our ansatz uses properties of derived operators and combines the discrete Laplace operator with reconstruction functions approximating the diffusion coefficient. Provided that the reconstructions are of a sufficiently high order, we prove that the order of accuracy of the discrete Laplace operator transfers to the derived diffusion operator. We show that the new discrete diffusion operator inherits the diagonal dominance property of the discrete Laplace operator. Finally, we present the possibility of discretizing anisotropic diffusion operators with the help of derived operators. Our numerical results for Poisson's equation and the heat equation show that even low-order reconstructions preserve the order of the underlying discrete Laplace operator for sufficiently smooth diffusion coefficients. In experiments, we demonstrate the applicability of the new discrete diffusion operator to interface problems with point clouds not aligning to the interface and numerically show first-order convergence.

In a very recent breakthrough, Behnezhad and Ghafari [arXiv'24] developed a novel fully dynamic randomized algorithm for maintaining a $(1-\epsilon)$-approximation of maximum matching with amortized update time potentially much better than the trivial $O(n)$ update time. The runtime of the BG algorithm is parameterized via the following graph theoretical concept: * For any $n$, define $ORS(n)$ -- standing for Ordered RS Graph -- to be the largest number of edge-disjoint matchings $M_1,\ldots,M_t$ of size $\Theta(n)$ in an $n$-vertex graph such that for every $i \in [t]$, $M_i$ is an induced matching in the subgraph $M_{i} \cup M_{i+1} \cup \ldots \cup M_t$. Then, for any fixed $\epsilon > 0$, the BG algorithm runs in \[ O\left( \sqrt{n^{1+O(\epsilon)} \cdot ORS(n)} \right) \] amortized update time with high probability, even against an adaptive adversary. $ORS(n)$ is a close variant of a more well-known quantity regarding RS graphs (which require every matching to be induced regardless of the ordering). It is currently only known that $n^{o(1)} \leqslant ORS(n) \leqslant n^{1-o(1)}$, and closing this gap appears to be a notoriously challenging problem. In this work, we further strengthen the result of Behnezhad and Ghafari and push it to limit to obtain a randomized algorithm with amortized update time of \[ n^{o(1)} \cdot ORS(n) \] with high probability, even against an adaptive adversary. In the limit, i.e., if current lower bounds for $ORS(n) = n^{o(1)}$ are almost optimal, our algorithm achieves an $n^{o(1)}$ update time for $(1-\epsilon)$-approximation of maximum matching, almost fully resolving this fundamental question. In its current stage also, this fully reduces the algorithmic problem of designing dynamic matching algorithms to a purely combinatorial problem of upper bounding $ORS(n)$ with no algorithmic considerations.

Efficient algorithms for solving high-dimensional partial differential equations (PDEs) has been an exceedingly difficult task for a long time, due to the curse of dimensionality. We extend the forward-backward stochastic neural networks (FBSNNs) which depends on forward-backward stochastic differential equation (FBSDE) to solve incompressible Navier-Stokes equation. For Cahn-Hilliard equation, we derive a modified Cahn-Hilliard equation from a widely used stabilized scheme for original Cahn-Hilliard equation. This equation can be written as a continuous parabolic system, where FBSDE can be applied and the unknown solution is approximated by neural network. Also our method is successfully developed to Cahn-Hilliard-Navier-Stokes (CHNS) equation. The accuracy and stability of our methods are shown in many numerical experiments, specially in high dimension.

Many modern spatio-temporal data sets, in sociology, epidemiology or seismology, for example, exhibit self-exciting characteristics, triggering and clustering behaviors both at the same time, that a suitable Hawkes space-time process can accurately capture. This paper aims to develop a fast and flexible parametric inference technique to recover the parameters of the kernel functions involved in the intensity function of a space-time Hawkes process based on such data. Our statistical approach combines three key ingredients: 1) kernels with finite support are considered, 2) the space-time domain is appropriately discretized, and 3) (approximate) precomputations are used. The inference technique we propose then consists of a $\ell_2$ gradient-based solver that is fast and statistically accurate. In addition to describing the algorithmic aspects, numerical experiments have been carried out on synthetic and real spatio-temporal data, providing solid empirical evidence of the relevance of the proposed methodology.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

Cold-start problems are long-standing challenges for practical recommendations. Most existing recommendation algorithms rely on extensive observed data and are brittle to recommendation scenarios with few interactions. This paper addresses such problems using few-shot learning and meta learning. Our approach is based on the insight that having a good generalization from a few examples relies on both a generic model initialization and an effective strategy for adapting this model to newly arising tasks. To accomplish this, we combine the scenario-specific learning with a model-agnostic sequential meta-learning and unify them into an integrated end-to-end framework, namely Scenario-specific Sequential Meta learner (or s^2 meta). By doing so, our meta-learner produces a generic initial model through aggregating contextual information from a variety of prediction tasks while effectively adapting to specific tasks by leveraging learning-to-learn knowledge. Extensive experiments on various real-world datasets demonstrate that our proposed model can achieve significant gains over the state-of-the-arts for cold-start problems in online recommendation. Deployment is at the Guess You Like session, the front page of the Mobile Taobao.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis, thereby allowing manual manipulation in predicting the final answer.

北京阿比特科技有限公司