Since the 1970s with the work of McNaughton, Papert and Sch\"utzenberger, a regular language is known to be definable in the first-order logic if and only if its syntactic monoid is aperiodic. This algebraic characterisation of a fundamental logical fragment has been extended in the quantitative case by Droste and Gastin, dealing with polynomially ambiguous weighted automata and a restricted fragment of weighted first-order logic. In the quantitative setting, the full weighted first-order logic (without the restriction that Droste and Gastin use, about the quantifier alternation) is more powerful than weighted automata, and extensions of the automata with two-way navigation, and pebbles or nested capabilities have been introduced to deal with it. In this work, we characterise the fragment of these extended weighted automata that recognise exactly the full weighted first-order logic, under the condition that automata are polynomially ambiguous.
We study the combinatorial contracting problem of D\"utting et al. [FOCS '21], in which a principal seeks to incentivize an agent to take a set of costly actions. In their model, there is a binary outcome (the agent can succeed or fail), and the success probability and the costs depend on the set of actions taken. The optimal contract is linear, paying the agent an $\alpha$ fraction of the reward. For gross substitutes (GS) rewards and additive costs, they give a poly-time algorithm for finding the optimal contract. They use the properties of GS functions to argue that there are poly-many "critical values" of $\alpha$, and that one can iterate through all of them efficiently in order to find the optimal contract. In this work we study to which extent GS rewards and additive costs constitute a tractability frontier for combinatorial contracts. We present an algorithm that for any rewards and costs, enumerates all critical values, with poly-many demand queries (in the number of critical values). This implies the tractability of the optimal contract for any setting with poly-many critical values and efficient demand oracle. A direct corollary is a poly-time algorithm for the optimal contract in settings with supermodular rewards and submodular costs. We also study a natural class of matching-based instances with XOS rewards and additive costs. While the demand problem for this setting is tractable, we show that it admits an exponential number of critical values. On the positive side, we present (pseudo-) polynomial-time algorithms for two natural special cases of this setting. Our work unveils a profound connection to sensitivity analysis, and designates matching-based instances as a crucial focal point for gaining a deeper understanding of combinatorial contract settings.
Data mining reproduces colonialism, and Indigenous voices are being left out of the development of technology that relies on data, such as artificial intelligence. This research stresses the need for the inclusion of Indigenous Data Sovereignty and centers on the importance of Indigenous rights over their own data. Inclusion is necessary in order to integrate Indigenous knowledge into the design, development, and implementation of data-reliant technology. To support this hypothesis and address the problem, the CARE Principles for Indigenous Data Governance (Collective Benefit, Authority to Control, Responsibility, and Ethics) are applied. We cover how the colonial practices of data mining do not align with Indigenous convictions. The included case studies highlight connections to Indigenous rights in relation to the protection of data and environmental ecosystems, thus establishing how data governance can serve both the people and the Earth. By applying the CARE Principles to the issues that arise from data mining and neocolonialism, our goal is to provide a framework that can be used in technological development. The theory is that this could reflect outwards to promote data sovereignty generally and create new relationships between people and data that are ethical as opposed to driven by speed and profit.
Philosophical research in AI has hitherto largely focused on the ethics of AI. In this paper we, an ethicist of belief and a machine learning scientist, suggest that we need to pursue a novel area of philosophical research in AI - the epistemology of AI, and in particular an ethics of belief for AI. Here we take the ethics of belief, a field that has been defined in various ways, to refer to a sub-field within epistemology. This subfield is concerned with the study of possible moral, practical, and other non-alethic dimensions of belief. And in this paper, we will primarily be concerned with the normative question within the ethics of belief regarding what agents - both human and artificial - ought to believe, rather than with descriptive questions concerning whether certain beliefs meet various evaluative standards such as being true, being justified or warranted, constituting knowledge, and so on. We suggest four topics in extant work in the ethics of (human) belief that can be applied to an ethics of AI belief: doxastic wronging by AI; morally owed beliefs; pragmatic and moral encroachment on AI beliefs; and moral responsibility for AI beliefs. We also indicate two relatively nascent areas of philosophical research that haven't yet been generally recognized as ethics of AI belief research, but that do fall within this field of research in virtue of investigating various moral and practical dimensions of belief: the epistemic and ethical decolonization of AI; and epistemic injustice in AI.
Interactions between humans are diverse and context-dependent, but previous works have treated them as categorical, disregarding the heavy tail of possible interactions. We propose a new paradigm of learning human-human interactions as free text from a single still image, allowing for flexibility in modeling the unlimited space of situations and relationships between people. To overcome the absence of data labelled specifically for this task, we use knowledge distillation applied to synthetic caption data produced by a large language model without explicit supervision. We show that the pseudo-labels produced by this procedure can be used to train a captioning model to effectively understand human-human interactions in images, as measured by a variety of metrics that measure textual and semantic faithfulness and factual groundedness of our predictions. We further show that our approach outperforms SOTA image captioning and situation recognition models on this task. We will release our code and pseudo-labels along with Waldo and Wenda, a manually-curated test set for still image human-human interaction understanding.
We present the algebra of assume-guarantee (AG) contracts. We define contracts, provide new as well as known operations, and show how these operations are related. Contracts are functorial: any Boolean algebra has an associated contract algebra. We study monoid and semiring structures in contract algebra -- and the mappings between such structures. We discuss the actions of a Boolean algebra on its contract algebra.
Incorporating external knowledge into dialogue generation (KIDG) is crucial for improving the correctness of response, where evidence fragments serve as knowledgeable snippets supporting the factual dialogue replies. However, introducing irrelevant content often adversely impacts reply quality and easily leads to hallucinated responses. Prior work on evidence retrieval and integration in dialogue systems falls short of fully leveraging existing evidence since the model fails to locate useful fragments accurately and overlooks hidden evidence labels within the KIDG dataset. To fully Unleash the potential of evidence, we propose a framework to effectively incorporate Evidence in knowledge-Intensive Dialogue Generation (u-EIDG). Specifically, we introduce an automatic evidence generation framework that harnesses the power of Large Language Models (LLMs) to mine reliable evidence veracity labels from unlabeled data. By utilizing these evidence labels, we train a reliable evidence indicator to effectively identify relevant evidence from retrieved passages. Furthermore, we propose an evidence-augmented generator with an evidence-focused attention mechanism, which allows the model to concentrate on evidenced segments. Experimental results on MultiDoc2Dial demonstrate the efficacy of evidential label augmentation and refined attention mechanisms in improving model performance. Further analysis confirms that the proposed method outperforms other baselines (+3~+5 points) regarding coherence and factual consistency.
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.
Since the 1950s, machine translation (MT) has become one of the important tasks of AI and development, and has experienced several different periods and stages of development, including rule-based methods, statistical methods, and recently proposed neural network-based learning methods. Accompanying these staged leaps is the evaluation research and development of MT, especially the important role of evaluation methods in statistical translation and neural translation research. The evaluation task of MT is not only to evaluate the quality of machine translation, but also to give timely feedback to machine translation researchers on the problems existing in machine translation itself, how to improve and how to optimise. In some practical application fields, such as in the absence of reference translations, the quality estimation of machine translation plays an important role as an indicator to reveal the credibility of automatically translated target languages. This report mainly includes the following contents: a brief history of machine translation evaluation (MTE), the classification of research methods on MTE, and the the cutting-edge progress, including human evaluation, automatic evaluation, and evaluation of evaluation methods (meta-evaluation). Manual evaluation and automatic evaluation include reference-translation based and reference-translation independent participation; automatic evaluation methods include traditional n-gram string matching, models applying syntax and semantics, and deep learning models; evaluation of evaluation methods includes estimating the credibility of human evaluations, the reliability of the automatic evaluation, the reliability of the test set, etc. Advances in cutting-edge evaluation methods include task-based evaluation, using pre-trained language models based on big data, and lightweight optimisation models using distillation techniques.
We consider the problem of explaining the predictions of graph neural networks (GNNs), which otherwise are considered as black boxes. Existing methods invariably focus on explaining the importance of graph nodes or edges but ignore the substructures of graphs, which are more intuitive and human-intelligible. In this work, we propose a novel method, known as SubgraphX, to explain GNNs by identifying important subgraphs. Given a trained GNN model and an input graph, our SubgraphX explains its predictions by efficiently exploring different subgraphs with Monte Carlo tree search. To make the tree search more effective, we propose to use Shapley values as a measure of subgraph importance, which can also capture the interactions among different subgraphs. To expedite computations, we propose efficient approximation schemes to compute Shapley values for graph data. Our work represents the first attempt to explain GNNs via identifying subgraphs explicitly and directly. Experimental results show that our SubgraphX achieves significantly improved explanations, while keeping computations at a reasonable level.
Knowledge graph embedding, which aims to represent entities and relations as low dimensional vectors (or matrices, tensors, etc.), has been shown to be a powerful technique for predicting missing links in knowledge graphs. Existing knowledge graph embedding models mainly focus on modeling relation patterns such as symmetry/antisymmetry, inversion, and composition. However, many existing approaches fail to model semantic hierarchies, which are common in real-world applications. To address this challenge, we propose a novel knowledge graph embedding model---namely, Hierarchy-Aware Knowledge Graph Embedding (HAKE)---which maps entities into the polar coordinate system. HAKE is inspired by the fact that concentric circles in the polar coordinate system can naturally reflect the hierarchy. Specifically, the radial coordinate aims to model entities at different levels of the hierarchy, and entities with smaller radii are expected to be at higher levels; the angular coordinate aims to distinguish entities at the same level of the hierarchy, and these entities are expected to have roughly the same radii but different angles. Experiments demonstrate that HAKE can effectively model the semantic hierarchies in knowledge graphs, and significantly outperforms existing state-of-the-art methods on benchmark datasets for the link prediction task.